![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq2i | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xrneq2i | ⊢ (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xrneq2 37119 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⋉ cxrn 36911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3952 df-ss 3962 df-br 5143 df-opab 5205 df-co 5679 df-xrn 37110 |
This theorem is referenced by: disjsuc 37498 |
Copyright terms: Public domain | W3C validator |