Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq2i Structured version   Visualization version   GIF version

Theorem xrneq2i 37120
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypothesis
Ref Expression
xrneq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
xrneq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem xrneq2i
StepHypRef Expression
1 xrneq2i.1 . 2 𝐴 = 𝐵
2 xrneq2 37119 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cxrn 36911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3952  df-ss 3962  df-br 5143  df-opab 5205  df-co 5679  df-xrn 37110
This theorem is referenced by:  disjsuc  37498
  Copyright terms: Public domain W3C validator