| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfrep3cl | Structured version Visualization version GIF version | ||
| Description: An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfrep3cl.1 | ⊢ 𝐴 ∈ V |
| zfrep3cl.2 | ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| zfrep3cl | ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | zfrep3cl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | zfrep3cl.2 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) | |
| 4 | 1, 2, 3 | zfrepclf 5273 | 1 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2107 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |