MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep3cl Structured version   Visualization version   GIF version

Theorem zfrep3cl 5298
Description: An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
zfrep3cl.1 𝐴 ∈ V
zfrep3cl.2 (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))
Assertion
Ref Expression
zfrep3cl 𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem zfrep3cl
StepHypRef Expression
1 nfcv 2903 . 2 𝑥𝐴
2 zfrep3cl.1 . 2 𝐴 ∈ V
3 zfrep3cl.2 . 2 (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))
41, 2, 3zfrepclf 5297 1 𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1776  wcel 2106  Vcvv 3478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-cleq 2727  df-clel 2814  df-nfc 2890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator