| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfrep3cl | Structured version Visualization version GIF version | ||
| Description: An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfrep3cl.1 | ⊢ 𝐴 ∈ V |
| zfrep3cl.2 | ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| zfrep3cl | ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | zfrep3cl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | zfrep3cl.2 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) | |
| 4 | 1, 2, 3 | zfrepclf 5266 | 1 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |