MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep4 Structured version   Visualization version   GIF version

Theorem zfrep4 5297
Description: A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
zfrep4.1 {𝑥𝜑} ∈ V
zfrep4.2 (𝜑 → ∃𝑧𝑦(𝜓𝑦 = 𝑧))
Assertion
Ref Expression
zfrep4 {𝑦 ∣ ∃𝑥(𝜑𝜓)} ∈ V
Distinct variable groups:   𝜑,𝑦,𝑧   𝜓,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem zfrep4
StepHypRef Expression
1 abid 2706 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
21anbi1i 622 . . . 4 ((𝑥 ∈ {𝑥𝜑} ∧ 𝜓) ↔ (𝜑𝜓))
32exbii 1842 . . 3 (∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓) ↔ ∃𝑥(𝜑𝜓))
43abbii 2795 . 2 {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)} = {𝑦 ∣ ∃𝑥(𝜑𝜓)}
5 nfab1 2893 . . . . 5 𝑥{𝑥𝜑}
6 zfrep4.1 . . . . 5 {𝑥𝜑} ∈ V
7 zfrep4.2 . . . . . 6 (𝜑 → ∃𝑧𝑦(𝜓𝑦 = 𝑧))
81, 7sylbi 216 . . . . 5 (𝑥 ∈ {𝑥𝜑} → ∃𝑧𝑦(𝜓𝑦 = 𝑧))
95, 6, 8zfrepclf 5295 . . . 4 𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓))
10 eqabb 2865 . . . . 5 (𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)} ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)))
1110exbii 1842 . . . 4 (∃𝑧 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)} ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)))
129, 11mpbir 230 . . 3 𝑧 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)}
1312issetri 3478 . 2 {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥𝜑} ∧ 𝜓)} ∈ V
144, 13eqeltrri 2822 1 {𝑦 ∣ ∃𝑥(𝜑𝜓)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  wcel 2098  {cab 2702  Vcvv 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-v 3463
This theorem is referenced by:  zfpair  5421  cshwsexaOLD  14816
  Copyright terms: Public domain W3C validator