| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfrep4 | Structured version Visualization version GIF version | ||
| Description: A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfrep4.1 | ⊢ {𝑥 ∣ 𝜑} ∈ V |
| zfrep4.2 | ⊢ (𝜑 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| zfrep4 | ⊢ {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2713 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 2 | 1 | anbi1i 624 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓)) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)} = {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} |
| 5 | nfab1 2896 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 6 | zfrep4.1 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} ∈ V | |
| 7 | zfrep4.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
| 8 | 1, 7 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 9 | 5, 6, 8 | zfrepclf 5229 | . . . 4 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)) |
| 10 | eqabb 2870 | . . . . 5 ⊢ (𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓))) | |
| 11 | 10 | exbii 1849 | . . . 4 ⊢ (∃𝑧 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)} ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓))) |
| 12 | 9, 11 | mpbir 231 | . . 3 ⊢ ∃𝑧 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)} |
| 13 | 12 | issetri 3455 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ∧ 𝜓)} ∈ V |
| 14 | 4, 13 | eqeltrri 2828 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 |
| This theorem is referenced by: zfpair 5359 |
| Copyright terms: Public domain | W3C validator |