![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfrepclf | Structured version Visualization version GIF version |
Description: An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfrepclf.1 | ⊢ Ⅎ𝑥𝐴 |
zfrepclf.2 | ⊢ 𝐴 ∈ V |
zfrepclf.3 | ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
zfrepclf | ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrepclf.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | zfrepclf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2921 | . . . . 5 ⊢ Ⅎ𝑥 𝑣 = 𝐴 |
4 | eleq2 2823 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝐴)) | |
5 | zfrepclf.3 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) | |
6 | 4, 5 | syl6bi 253 | . . . . 5 ⊢ (𝑣 = 𝐴 → (𝑥 ∈ 𝑣 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧))) |
7 | 3, 6 | alrimi 2207 | . . . 4 ⊢ (𝑣 = 𝐴 → ∀𝑥(𝑥 ∈ 𝑣 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧))) |
8 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
9 | 8 | axrep5 5252 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝑣 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑))) |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝑣 = 𝐴 → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑))) |
11 | 4 | anbi1d 631 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → ((𝑥 ∈ 𝑣 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
12 | 3, 11 | exbid 2217 | . . . . . 6 ⊢ (𝑣 = 𝐴 → (∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
13 | 12 | bibi2d 343 | . . . . 5 ⊢ (𝑣 = 𝐴 → ((𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑)) ↔ (𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)))) |
14 | 13 | albidv 1924 | . . . 4 ⊢ (𝑣 = 𝐴 → (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)))) |
15 | 14 | exbidv 1925 | . . 3 ⊢ (𝑣 = 𝐴 → (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑣 ∧ 𝜑)) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)))) |
16 | 10, 15 | mpbid 231 | . 2 ⊢ (𝑣 = 𝐴 → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
17 | 1, 16 | vtocle 3546 | 1 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 |
This theorem is referenced by: zfrep3cl 5256 zfrep4 5257 |
Copyright terms: Public domain | W3C validator |