New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clos1induct | Unicode version |
Description: Inductive law for closure. If the base set is a subset of , and is closed under , then the closure is a subset of . Theorem IX.5.15 of [Rosser] p. 247. (Contributed by SF, 11-Feb-2015.) |
Ref | Expression |
---|---|
clos1induct.1 | |
clos1induct.2 | |
clos1induct.3 | Clos1 |
Ref | Expression |
---|---|
clos1induct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clos1induct.3 | . . . 4 Clos1 | |
2 | clos1induct.1 | . . . . 5 | |
3 | clos1induct.2 | . . . . 5 | |
4 | 2, 3 | clos1ex 5877 | . . . 4 Clos1 |
5 | 1, 4 | eqeltri 2423 | . . 3 |
6 | inexg 4101 | . . 3 | |
7 | 5, 6 | mpan2 652 | . 2 |
8 | 1 | clos1base 5879 | . . 3 |
9 | ssin 3478 | . . . 4 | |
10 | 9 | biimpi 186 | . . 3 |
11 | 8, 10 | mpan2 652 | . 2 |
12 | elima2 4756 | . . . . . . 7 | |
13 | elin 3220 | . . . . . . 7 | |
14 | 12, 13 | imbi12i 316 | . . . . . 6 |
15 | df-ral 2620 | . . . . . . . 8 | |
16 | impexp 433 | . . . . . . . . . 10 | |
17 | 1 | clos1conn 5880 | . . . . . . . . . . . . 13 |
18 | 17 | biantrud 493 | . . . . . . . . . . . 12 |
19 | 18 | adantrl 696 | . . . . . . . . . . 11 |
20 | 19 | pm5.74i 236 | . . . . . . . . . 10 |
21 | 16, 20 | bitr3i 242 | . . . . . . . . 9 |
22 | 21 | albii 1566 | . . . . . . . 8 |
23 | 15, 22 | bitri 240 | . . . . . . 7 |
24 | elin 3220 | . . . . . . . . . . . 12 | |
25 | ancom 437 | . . . . . . . . . . . 12 | |
26 | 24, 25 | bitri 240 | . . . . . . . . . . 11 |
27 | 26 | anbi1i 676 | . . . . . . . . . 10 |
28 | anass 630 | . . . . . . . . . 10 | |
29 | 27, 28 | bitri 240 | . . . . . . . . 9 |
30 | 29 | imbi1i 315 | . . . . . . . 8 |
31 | 30 | albii 1566 | . . . . . . 7 |
32 | 19.23v 1891 | . . . . . . 7 | |
33 | 23, 31, 32 | 3bitr2i 264 | . . . . . 6 |
34 | 14, 33 | bitr4i 243 | . . . . 5 |
35 | 34 | albii 1566 | . . . 4 |
36 | dfss2 3263 | . . . 4 | |
37 | ralcom4 2878 | . . . 4 | |
38 | 35, 36, 37 | 3bitr4i 268 | . . 3 |
39 | 38 | biimpri 197 | . 2 |
40 | df-clos1 5874 | . . . . 5 Clos1 | |
41 | 1, 40 | eqtri 2373 | . . . 4 |
42 | sseq2 3294 | . . . . . . . . 9 | |
43 | imaeq2 4939 | . . . . . . . . . 10 | |
44 | id 19 | . . . . . . . . . 10 | |
45 | 43, 44 | sseq12d 3301 | . . . . . . . . 9 |
46 | 42, 45 | anbi12d 691 | . . . . . . . 8 |
47 | 46 | elabg 2987 | . . . . . . 7 |
48 | 47 | biimprd 214 | . . . . . 6 |
49 | 48 | 3impib 1149 | . . . . 5 |
50 | intss1 3942 | . . . . 5 | |
51 | 49, 50 | syl 15 | . . . 4 |
52 | 41, 51 | syl5eqss 3316 | . . 3 |
53 | inss1 3476 | . . 3 | |
54 | 52, 53 | syl6ss 3285 | . 2 |
55 | 7, 11, 39, 54 | syl3an 1224 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wal 1540 wex 1541 wceq 1642 wcel 1710 cab 2339 wral 2615 cvv 2860 cin 3209 wss 3258 cint 3927 class class class wbr 4640 cima 4723 Clos1 cclos1 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-clos1 5874 |
This theorem is referenced by: clos1is 5882 clos1nrel 5887 clos10 5888 spacind 6288 frecxp 6315 |
Copyright terms: Public domain | W3C validator |