New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > funcnvuni | Unicode version |
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5157 for "single-rooted" definition.) (Contributed by set.mm contributors, 11-Aug-2004.) |
Ref | Expression |
---|---|
funcnvuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 4887 | . . . . . . . 8 | |
2 | 1 | eqeq2d 2364 | . . . . . . 7 |
3 | 2 | cbvrexv 2837 | . . . . . 6 |
4 | cnveq 4887 | . . . . . . . . . . 11 | |
5 | 4 | funeqd 5130 | . . . . . . . . . 10 |
6 | sseq1 3293 | . . . . . . . . . . . 12 | |
7 | sseq2 3294 | . . . . . . . . . . . 12 | |
8 | 6, 7 | orbi12d 690 | . . . . . . . . . . 11 |
9 | 8 | ralbidv 2635 | . . . . . . . . . 10 |
10 | 5, 9 | anbi12d 691 | . . . . . . . . 9 |
11 | 10 | rspcv 2952 | . . . . . . . 8 |
12 | funeq 5128 | . . . . . . . . . 10 | |
13 | 12 | biimprcd 216 | . . . . . . . . 9 |
14 | sseq2 3294 | . . . . . . . . . . . . . . 15 | |
15 | sseq1 3293 | . . . . . . . . . . . . . . 15 | |
16 | 14, 15 | orbi12d 690 | . . . . . . . . . . . . . 14 |
17 | 16 | rspcv 2952 | . . . . . . . . . . . . 13 |
18 | cnvss 4886 | . . . . . . . . . . . . . . . 16 | |
19 | cnvss 4886 | . . . . . . . . . . . . . . . 16 | |
20 | 18, 19 | orim12i 502 | . . . . . . . . . . . . . . 15 |
21 | sseq12 3295 | . . . . . . . . . . . . . . . . 17 | |
22 | 21 | ancoms 439 | . . . . . . . . . . . . . . . 16 |
23 | sseq12 3295 | . . . . . . . . . . . . . . . 16 | |
24 | 22, 23 | orbi12d 690 | . . . . . . . . . . . . . . 15 |
25 | 20, 24 | syl5ibrcom 213 | . . . . . . . . . . . . . 14 |
26 | 25 | exp3a 425 | . . . . . . . . . . . . 13 |
27 | 17, 26 | syl6com 31 | . . . . . . . . . . . 12 |
28 | 27 | rexlimdv 2738 | . . . . . . . . . . 11 |
29 | 28 | com23 72 | . . . . . . . . . 10 |
30 | 29 | alrimdv 1633 | . . . . . . . . 9 |
31 | 13, 30 | anim12ii 553 | . . . . . . . 8 |
32 | 11, 31 | syl6com 31 | . . . . . . 7 |
33 | 32 | rexlimdv 2738 | . . . . . 6 |
34 | 3, 33 | syl5bi 208 | . . . . 5 |
35 | 34 | alrimiv 1631 | . . . 4 |
36 | df-ral 2620 | . . . . 5 | |
37 | vex 2863 | . . . . . . . 8 | |
38 | eqeq1 2359 | . . . . . . . . 9 | |
39 | 38 | rexbidv 2636 | . . . . . . . 8 |
40 | 37, 39 | elab 2986 | . . . . . . 7 |
41 | eqeq1 2359 | . . . . . . . . . 10 | |
42 | 41 | rexbidv 2636 | . . . . . . . . 9 |
43 | 42 | ralab 2998 | . . . . . . . 8 |
44 | 43 | anbi2i 675 | . . . . . . 7 |
45 | 40, 44 | imbi12i 316 | . . . . . 6 |
46 | 45 | albii 1566 | . . . . 5 |
47 | 36, 46 | bitr2i 241 | . . . 4 |
48 | 35, 47 | sylib 188 | . . 3 |
49 | fununi 5161 | . . 3 | |
50 | 48, 49 | syl 15 | . 2 |
51 | cnvuni 4896 | . . . 4 | |
52 | vex 2863 | . . . . . 6 | |
53 | 52 | cnvex 5103 | . . . . 5 |
54 | 53 | dfiun2 4002 | . . . 4 |
55 | 51, 54 | eqtri 2373 | . . 3 |
56 | 55 | funeqi 5129 | . 2 |
57 | 50, 56 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wal 1540 wceq 1642 wcel 1710 cab 2339 wral 2615 wrex 2616 wss 3258 cuni 3892 ciun 3970 ccnv 4772 wfun 4776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-swap 4725 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-fun 4790 |
This theorem is referenced by: fun11uni 5163 |
Copyright terms: Public domain | W3C validator |