| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > funcnvuni | Unicode version | ||
| Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5157 for "single-rooted" definition.) (Contributed by set.mm contributors, 11-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| funcnvuni | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnveq 4887 | 
. . . . . . . 8
 | |
| 2 | 1 | eqeq2d 2364 | 
. . . . . . 7
 | 
| 3 | 2 | cbvrexv 2837 | 
. . . . . 6
 | 
| 4 | cnveq 4887 | 
. . . . . . . . . . 11
 | |
| 5 | 4 | funeqd 5130 | 
. . . . . . . . . 10
 | 
| 6 | sseq1 3293 | 
. . . . . . . . . . . 12
 | |
| 7 | sseq2 3294 | 
. . . . . . . . . . . 12
 | |
| 8 | 6, 7 | orbi12d 690 | 
. . . . . . . . . . 11
 | 
| 9 | 8 | ralbidv 2635 | 
. . . . . . . . . 10
 | 
| 10 | 5, 9 | anbi12d 691 | 
. . . . . . . . 9
 | 
| 11 | 10 | rspcv 2952 | 
. . . . . . . 8
 | 
| 12 | funeq 5128 | 
. . . . . . . . . 10
 | |
| 13 | 12 | biimprcd 216 | 
. . . . . . . . 9
 | 
| 14 | sseq2 3294 | 
. . . . . . . . . . . . . . 15
 | |
| 15 | sseq1 3293 | 
. . . . . . . . . . . . . . 15
 | |
| 16 | 14, 15 | orbi12d 690 | 
. . . . . . . . . . . . . 14
 | 
| 17 | 16 | rspcv 2952 | 
. . . . . . . . . . . . 13
 | 
| 18 | cnvss 4886 | 
. . . . . . . . . . . . . . . 16
 | |
| 19 | cnvss 4886 | 
. . . . . . . . . . . . . . . 16
 | |
| 20 | 18, 19 | orim12i 502 | 
. . . . . . . . . . . . . . 15
 | 
| 21 | sseq12 3295 | 
. . . . . . . . . . . . . . . . 17
 | |
| 22 | 21 | ancoms 439 | 
. . . . . . . . . . . . . . . 16
 | 
| 23 | sseq12 3295 | 
. . . . . . . . . . . . . . . 16
 | |
| 24 | 22, 23 | orbi12d 690 | 
. . . . . . . . . . . . . . 15
 | 
| 25 | 20, 24 | syl5ibrcom 213 | 
. . . . . . . . . . . . . 14
 | 
| 26 | 25 | exp3a 425 | 
. . . . . . . . . . . . 13
 | 
| 27 | 17, 26 | syl6com 31 | 
. . . . . . . . . . . 12
 | 
| 28 | 27 | rexlimdv 2738 | 
. . . . . . . . . . 11
 | 
| 29 | 28 | com23 72 | 
. . . . . . . . . 10
 | 
| 30 | 29 | alrimdv 1633 | 
. . . . . . . . 9
 | 
| 31 | 13, 30 | anim12ii 553 | 
. . . . . . . 8
 | 
| 32 | 11, 31 | syl6com 31 | 
. . . . . . 7
 | 
| 33 | 32 | rexlimdv 2738 | 
. . . . . 6
 | 
| 34 | 3, 33 | syl5bi 208 | 
. . . . 5
 | 
| 35 | 34 | alrimiv 1631 | 
. . . 4
 | 
| 36 | df-ral 2620 | 
. . . . 5
 | |
| 37 | vex 2863 | 
. . . . . . . 8
 | |
| 38 | eqeq1 2359 | 
. . . . . . . . 9
 | |
| 39 | 38 | rexbidv 2636 | 
. . . . . . . 8
 | 
| 40 | 37, 39 | elab 2986 | 
. . . . . . 7
 | 
| 41 | eqeq1 2359 | 
. . . . . . . . . 10
 | |
| 42 | 41 | rexbidv 2636 | 
. . . . . . . . 9
 | 
| 43 | 42 | ralab 2998 | 
. . . . . . . 8
 | 
| 44 | 43 | anbi2i 675 | 
. . . . . . 7
 | 
| 45 | 40, 44 | imbi12i 316 | 
. . . . . 6
 | 
| 46 | 45 | albii 1566 | 
. . . . 5
 | 
| 47 | 36, 46 | bitr2i 241 | 
. . . 4
 | 
| 48 | 35, 47 | sylib 188 | 
. . 3
 | 
| 49 | fununi 5161 | 
. . 3
 | |
| 50 | 48, 49 | syl 15 | 
. 2
 | 
| 51 | cnvuni 4896 | 
. . . 4
 | |
| 52 | vex 2863 | 
. . . . . 6
 | |
| 53 | 52 | cnvex 5103 | 
. . . . 5
 | 
| 54 | 53 | dfiun2 4002 | 
. . . 4
 | 
| 55 | 51, 54 | eqtri 2373 | 
. . 3
 | 
| 56 | 55 | funeqi 5129 | 
. 2
 | 
| 57 | 50, 56 | sylibr 203 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-swap 4725 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-fun 4790 | 
| This theorem is referenced by: fun11uni 5163 | 
| Copyright terms: Public domain | W3C validator |