NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ranfnex Unicode version

Theorem ranfnex 5872
Description: The range function is stratified. (Contributed by Scott Fenton, 9-Aug-2019.)
Assertion
Ref Expression
ranfnex Ran

Proof of Theorem ranfnex
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ranfn 5773 . . 3 Ran
2 elin 3220 . . . . . . . . 9 Ins4 SI3 Ins2 Ins2 S Ins4 SI3 Ins2 Ins2 S
3 vex 2863 . . . . . . . . . . . 12
43oqelins4 5795 . . . . . . . . . . 11 Ins4 SI3 SI3
5 vex 2863 . . . . . . . . . . . . 13
6 vex 2863 . . . . . . . . . . . . 13
7 vex 2863 . . . . . . . . . . . . 13
85, 6, 7otsnelsi3 5806 . . . . . . . . . . . 12 SI3
9 df-br 4641 . . . . . . . . . . . 12
106, 7opex 4589 . . . . . . . . . . . . 13
1110ideq 4871 . . . . . . . . . . . 12
128, 9, 113bitr2i 264 . . . . . . . . . . 11 SI3
134, 12bitri 240 . . . . . . . . . 10 Ins4 SI3
14 snex 4112 . . . . . . . . . . . 12
1514otelins2 5792 . . . . . . . . . . 11 Ins2 Ins2 S Ins2 S
16 snex 4112 . . . . . . . . . . . . 13
1716otelins2 5792 . . . . . . . . . . . 12 Ins2 S S
185, 3opelssetsn 4761 . . . . . . . . . . . 12 S
1917, 18bitri 240 . . . . . . . . . . 11 Ins2 S
2015, 19bitri 240 . . . . . . . . . 10 Ins2 Ins2 S
2113, 20anbi12i 678 . . . . . . . . 9 Ins4 SI3 Ins2 Ins2 S
222, 21bitri 240 . . . . . . . 8 Ins4 SI3 Ins2 Ins2 S
2322exbii 1582 . . . . . . 7 Ins4 SI3 Ins2 Ins2 S
24 elima1c 4948 . . . . . . 7 Ins4 SI3 Ins2 Ins2 S 1c Ins4 SI3 Ins2 Ins2 S
25 df-clel 2349 . . . . . . 7
2623, 24, 253bitr4i 268 . . . . . 6 Ins4 SI3 Ins2 Ins2 S 1c
2726exbii 1582 . . . . 5 Ins4 SI3 Ins2 Ins2 S 1c
28 elima1c 4948 . . . . 5 Ins4 SI3 Ins2 Ins2 S 1c1c Ins4 SI3 Ins2 Ins2 S 1c
29 elrn2 4898 . . . . 5
3027, 28, 293bitr4i 268 . . . 4 Ins4 SI3 Ins2 Ins2 S 1c1c
3130releqmpt 5809 . . 3 Ins3 S Ins2 Ins4 SI3 Ins2 Ins2 S 1c1c1c
321, 31eqtr4i 2376 . 2 Ran Ins3 S Ins2 Ins4 SI3 Ins2 Ins2 S 1c1c1c
33 vvex 4110 . . 3
34 idex 5505 . . . . . . . 8
3534si3ex 5807 . . . . . . 7 SI3
3635ins4ex 5800 . . . . . 6 Ins4 SI3
37 ssetex 4745 . . . . . . . 8 S
3837ins2ex 5798 . . . . . . 7 Ins2 S
3938ins2ex 5798 . . . . . 6 Ins2 Ins2 S
4036, 39inex 4106 . . . . 5 Ins4 SI3 Ins2 Ins2 S
41 1cex 4143 . . . . 5 1c
4240, 41imaex 4748 . . . 4 Ins4 SI3 Ins2 Ins2 S 1c
4342, 41imaex 4748 . . 3 Ins4 SI3 Ins2 Ins2 S 1c1c
4433, 43mptexlem 5811 . 2 Ins3 S Ins2 Ins4 SI3 Ins2 Ins2 S 1c1c1c
4532, 44eqeltri 2423 1 Ran
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   wceq 1642   wcel 1710  cvv 2860   ∼ ccompl 3206   cin 3209   csymdif 3210  csn 3738  1cc1c 4135  cop 4562   class class class wbr 4640   S csset 4720  cima 4723   cid 4764   cxp 4771  ccnv 4772   crn 4774   cmpt 5652   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758   Ran cranfn 5772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-2nd 4798  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759  df-ranfn 5773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator