New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mptexlem | Unicode version |
Description: Lemma for the existence of a mapping. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
mptexlem.1 | |
mptexlem.2 |
Ref | Expression |
---|---|
mptexlem | ∼ Ins3 S Ins2 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptexlem.1 | . . 3 | |
2 | vvex 4109 | . . 3 | |
3 | 1, 2 | xpex 5115 | . 2 |
4 | ssetex 4744 | . . . . . . 7 S | |
5 | 4 | ins3ex 5798 | . . . . . 6 Ins3 S |
6 | mptexlem.2 | . . . . . . 7 | |
7 | 6 | ins2ex 5797 | . . . . . 6 Ins2 |
8 | 5, 7 | symdifex 4108 | . . . . 5 Ins3 S Ins2 |
9 | 1cex 4142 | . . . . 5 1c | |
10 | 8, 9 | imaex 4747 | . . . 4 Ins3 S Ins2 1c |
11 | 10 | complex 4104 | . . 3 ∼ Ins3 S Ins2 1c |
12 | 11 | cnvex 5102 | . 2 ∼ Ins3 S Ins2 1c |
13 | 3, 12 | inex 4105 | 1 ∼ Ins3 S Ins2 1c |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 cvv 2859 ∼ ccompl 3205 cin 3208 csymdif 3209 1cc1c 4134 S csset 4719 cima 4722 cxp 4770 ccnv 4771 Ins2 cins2 5749 Ins3 cins3 5751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-xp 4784 df-cnv 4785 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 |
This theorem is referenced by: pw1fnex 5852 domfnex 5870 ranfnex 5871 enprmaplem1 6076 enprmaplem4 6079 tcfnex 6244 |
Copyright terms: Public domain | W3C validator |