New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > otsnelsi3 | Unicode version |
Description: Ordered triple membership in triple singleton image. (Contributed by SF, 12-Feb-2015.) |
Ref | Expression |
---|---|
otsnelsi3.1 | |
otsnelsi3.2 | |
otsnelsi3.3 |
Ref | Expression |
---|---|
otsnelsi3 | SI3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-si3 5759 | . . 3 SI3 SI SI SI 1 | |
2 | 1 | eleq2i 2417 | . 2 SI3 SI SI SI 1 |
3 | elimapw1 4945 | . 2 SI SI SI 1 SI SI SI | |
4 | oteltxp 5783 | . . . . 5 SI SI SI SI SI SI | |
5 | vex 2863 | . . . . . . . 8 | |
6 | otsnelsi3.1 | . . . . . . . 8 | |
7 | 5, 6 | opsnelsi 5775 | . . . . . . 7 SI |
8 | df-br 4641 | . . . . . . 7 | |
9 | 7, 8 | bitr4i 243 | . . . . . 6 SI |
10 | oteltxp 5783 | . . . . . . 7 SI SI SI SI | |
11 | otsnelsi3.2 | . . . . . . . . . 10 | |
12 | 5, 11 | opsnelsi 5775 | . . . . . . . . 9 SI |
13 | opelco 4885 | . . . . . . . . 9 | |
14 | opeq 4620 | . . . . . . . . . . . . . 14 Proj1 Proj2 | |
15 | 14 | breq1i 4647 | . . . . . . . . . . . . 13 Proj1 Proj2 |
16 | 5 | proj1ex 4594 | . . . . . . . . . . . . . 14 Proj1 |
17 | 5 | proj2ex 4595 | . . . . . . . . . . . . . 14 Proj2 |
18 | 16, 17 | opbr2nd 5503 | . . . . . . . . . . . . 13 Proj1 Proj2 Proj2 |
19 | eqcom 2355 | . . . . . . . . . . . . 13 Proj2 Proj2 | |
20 | 15, 18, 19 | 3bitri 262 | . . . . . . . . . . . 12 Proj2 |
21 | 20 | anbi1i 676 | . . . . . . . . . . 11 Proj2 |
22 | 21 | exbii 1582 | . . . . . . . . . 10 Proj2 |
23 | breq1 4643 | . . . . . . . . . . 11 Proj2 Proj2 | |
24 | 17, 23 | ceqsexv 2895 | . . . . . . . . . 10 Proj2 Proj2 |
25 | 22, 24 | bitri 240 | . . . . . . . . 9 Proj2 |
26 | 12, 13, 25 | 3bitri 262 | . . . . . . . 8 SI Proj2 |
27 | otsnelsi3.3 | . . . . . . . . . 10 | |
28 | 5, 27 | opsnelsi 5775 | . . . . . . . . 9 SI |
29 | opelco 4885 | . . . . . . . . 9 | |
30 | 20 | anbi1i 676 | . . . . . . . . . . 11 Proj2 |
31 | 30 | exbii 1582 | . . . . . . . . . 10 Proj2 |
32 | breq1 4643 | . . . . . . . . . . 11 Proj2 Proj2 | |
33 | 17, 32 | ceqsexv 2895 | . . . . . . . . . 10 Proj2 Proj2 |
34 | 31, 33 | bitri 240 | . . . . . . . . 9 Proj2 |
35 | 28, 29, 34 | 3bitri 262 | . . . . . . . 8 SI Proj2 |
36 | 26, 35 | anbi12i 678 | . . . . . . 7 SI SI Proj2 Proj2 |
37 | 16, 17 | opbr2nd 5503 | . . . . . . . 8 Proj1 Proj2 Proj2 |
38 | 14 | breq1i 4647 | . . . . . . . 8 Proj1 Proj2 |
39 | 11, 27 | op1st2nd 5791 | . . . . . . . 8 Proj2 Proj2 Proj2 |
40 | 37, 38, 39 | 3bitr4ri 269 | . . . . . . 7 Proj2 Proj2 |
41 | 10, 36, 40 | 3bitri 262 | . . . . . 6 SI SI |
42 | 9, 41 | anbi12i 678 | . . . . 5 SI SI SI |
43 | 11, 27 | opex 4589 | . . . . . 6 |
44 | 6, 43 | op1st2nd 5791 | . . . . 5 |
45 | 4, 42, 44 | 3bitri 262 | . . . 4 SI SI SI |
46 | 45 | rexbii 2640 | . . 3 SI SI SI |
47 | risset 2662 | . . 3 | |
48 | 46, 47 | bitr4i 243 | . 2 SI SI SI |
49 | 2, 3, 48 | 3bitri 262 | 1 SI3 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 cvv 2860 csn 3738 1 cpw1 4136 cop 4562 Proj1 cproj1 4564 Proj2 cproj2 4565 class class class wbr 4640 c1st 4718 SI csi 4721 ccom 4722 cima 4723 c2nd 4784 ctxp 5736 SI3 csi3 5758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-si 4729 df-cnv 4786 df-2nd 4798 df-txp 5737 df-si3 5759 |
This theorem is referenced by: composeex 5821 addcfnex 5825 funsex 5829 crossex 5851 domfnex 5871 ranfnex 5872 transex 5911 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 mucex 6134 ovcelem1 6172 ceex 6175 |
Copyright terms: Public domain | W3C validator |