NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ranfnex GIF version

Theorem ranfnex 5872
Description: The range function is stratified. (Contributed by Scott Fenton, 9-Aug-2019.)
Assertion
Ref Expression
ranfnex Ran V

Proof of Theorem ranfnex
Dummy variables x y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ranfn 5773 . . 3 Ran = (x V ran x)
2 elin 3220 . . . . . . . . 9 ({w}, {z}, {y}, x ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ({w}, {z}, {y}, x Ins4 SI3 I {w}, {z}, {y}, x Ins2 Ins2 S ))
3 vex 2863 . . . . . . . . . . . 12 x V
43oqelins4 5795 . . . . . . . . . . 11 ({w}, {z}, {y}, x Ins4 SI3 I ↔ {w}, {z}, {y} SI3 I )
5 vex 2863 . . . . . . . . . . . . 13 w V
6 vex 2863 . . . . . . . . . . . . 13 z V
7 vex 2863 . . . . . . . . . . . . 13 y V
85, 6, 7otsnelsi3 5806 . . . . . . . . . . . 12 ({w}, {z}, {y} SI3 I ↔ w, z, y I )
9 df-br 4641 . . . . . . . . . . . 12 (w I z, yw, z, y I )
106, 7opex 4589 . . . . . . . . . . . . 13 z, y V
1110ideq 4871 . . . . . . . . . . . 12 (w I z, yw = z, y)
128, 9, 113bitr2i 264 . . . . . . . . . . 11 ({w}, {z}, {y} SI3 I ↔ w = z, y)
134, 12bitri 240 . . . . . . . . . 10 ({w}, {z}, {y}, x Ins4 SI3 I ↔ w = z, y)
14 snex 4112 . . . . . . . . . . . 12 {z} V
1514otelins2 5792 . . . . . . . . . . 11 ({w}, {z}, {y}, x Ins2 Ins2 S {w}, {y}, x Ins2 S )
16 snex 4112 . . . . . . . . . . . . 13 {y} V
1716otelins2 5792 . . . . . . . . . . . 12 ({w}, {y}, x Ins2 S {w}, x S )
185, 3opelssetsn 4761 . . . . . . . . . . . 12 ({w}, x S w x)
1917, 18bitri 240 . . . . . . . . . . 11 ({w}, {y}, x Ins2 S w x)
2015, 19bitri 240 . . . . . . . . . 10 ({w}, {z}, {y}, x Ins2 Ins2 S w x)
2113, 20anbi12i 678 . . . . . . . . 9 (({w}, {z}, {y}, x Ins4 SI3 I {w}, {z}, {y}, x Ins2 Ins2 S ) ↔ (w = z, y w x))
222, 21bitri 240 . . . . . . . 8 ({w}, {z}, {y}, x ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (w = z, y w x))
2322exbii 1582 . . . . . . 7 (w{w}, {z}, {y}, x ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ w(w = z, y w x))
24 elima1c 4948 . . . . . . 7 ({z}, {y}, x (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ↔ w{w}, {z}, {y}, x ( Ins4 SI3 I ∩ Ins2 Ins2 S ))
25 df-clel 2349 . . . . . . 7 (z, y xw(w = z, y w x))
2623, 24, 253bitr4i 268 . . . . . 6 ({z}, {y}, x (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ↔ z, y x)
2726exbii 1582 . . . . 5 (z{z}, {y}, x (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ↔ zz, y x)
28 elima1c 4948 . . . . 5 ({y}, x ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c) ↔ z{z}, {y}, x (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))
29 elrn2 4898 . . . . 5 (y ran xzz, y x)
3027, 28, 293bitr4i 268 . . . 4 ({y}, x ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c) ↔ y ran x)
3130releqmpt 5809 . . 3 ((V × V) ∩ ∼ (( Ins3 S Ins2 ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c)) “ 1c)) = (x V ran x)
321, 31eqtr4i 2376 . 2 Ran = ((V × V) ∩ ∼ (( Ins3 S Ins2 ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c)) “ 1c))
33 vvex 4110 . . 3 V V
34 idex 5505 . . . . . . . 8 I V
3534si3ex 5807 . . . . . . 7 SI3 I V
3635ins4ex 5800 . . . . . 6 Ins4 SI3 I V
37 ssetex 4745 . . . . . . . 8 S V
3837ins2ex 5798 . . . . . . 7 Ins2 S V
3938ins2ex 5798 . . . . . 6 Ins2 Ins2 S V
4036, 39inex 4106 . . . . 5 ( Ins4 SI3 I ∩ Ins2 Ins2 S ) V
41 1cex 4143 . . . . 5 1c V
4240, 41imaex 4748 . . . 4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) V
4342, 41imaex 4748 . . 3 ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c) V
4433, 43mptexlem 5811 . 2 ((V × V) ∩ ∼ (( Ins3 S Ins2 ((( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) “ 1c)) “ 1c)) V
4532, 44eqeltri 2423 1 Ran V
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206  cin 3209  csymdif 3210  {csn 3738  1cc1c 4135  cop 4562   class class class wbr 4640   S csset 4720  cima 4723   I cid 4764   × cxp 4771  ccnv 4772  ran crn 4774   cmpt 5652   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758   Ran cranfn 5772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-2nd 4798  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759  df-ranfn 5773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator