New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > domfnex | Unicode version |
Description: The domain function is stratified. (Contributed by Scott Fenton, 9-Aug-2019.) |
Ref | Expression |
---|---|
domfnex | Dom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-domfn 5771 | . . 3 Dom | |
2 | elin 3220 | . . . . . . . . 9 Ins4 SI3 Swap Ins2 Ins2 S Ins4 SI3 Swap Ins2 Ins2 S | |
3 | vex 2863 | . . . . . . . . . . . 12 | |
4 | 3 | oqelins4 5795 | . . . . . . . . . . 11 Ins4 SI3 Swap SI3 Swap |
5 | vex 2863 | . . . . . . . . . . . . 13 | |
6 | vex 2863 | . . . . . . . . . . . . 13 | |
7 | vex 2863 | . . . . . . . . . . . . 13 | |
8 | 5, 6, 7 | otsnelsi3 5806 | . . . . . . . . . . . 12 SI3 Swap Swap |
9 | df-br 4641 | . . . . . . . . . . . 12 Swap Swap | |
10 | 6, 7 | brswap2 4861 | . . . . . . . . . . . 12 Swap |
11 | 8, 9, 10 | 3bitr2i 264 | . . . . . . . . . . 11 SI3 Swap |
12 | 4, 11 | bitri 240 | . . . . . . . . . 10 Ins4 SI3 Swap |
13 | snex 4112 | . . . . . . . . . . . 12 | |
14 | 13 | otelins2 5792 | . . . . . . . . . . 11 Ins2 Ins2 S Ins2 S |
15 | snex 4112 | . . . . . . . . . . . . 13 | |
16 | 15 | otelins2 5792 | . . . . . . . . . . . 12 Ins2 S S |
17 | 5, 3 | opelssetsn 4761 | . . . . . . . . . . . 12 S |
18 | 16, 17 | bitri 240 | . . . . . . . . . . 11 Ins2 S |
19 | 14, 18 | bitri 240 | . . . . . . . . . 10 Ins2 Ins2 S |
20 | 12, 19 | anbi12i 678 | . . . . . . . . 9 Ins4 SI3 Swap Ins2 Ins2 S |
21 | 2, 20 | bitri 240 | . . . . . . . 8 Ins4 SI3 Swap Ins2 Ins2 S |
22 | 21 | exbii 1582 | . . . . . . 7 Ins4 SI3 Swap Ins2 Ins2 S |
23 | elima1c 4948 | . . . . . . 7 Ins4 SI3 Swap Ins2 Ins2 S 1c Ins4 SI3 Swap Ins2 Ins2 S | |
24 | df-clel 2349 | . . . . . . 7 | |
25 | 22, 23, 24 | 3bitr4i 268 | . . . . . 6 Ins4 SI3 Swap Ins2 Ins2 S 1c |
26 | 25 | exbii 1582 | . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S 1c |
27 | elima1c 4948 | . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S 1c1c Ins4 SI3 Swap Ins2 Ins2 S 1c | |
28 | eldm2 4900 | . . . . 5 | |
29 | 26, 27, 28 | 3bitr4i 268 | . . . 4 Ins4 SI3 Swap Ins2 Ins2 S 1c1c |
30 | 29 | releqmpt 5809 | . . 3 ∼ Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c |
31 | 1, 30 | eqtr4i 2376 | . 2 Dom ∼ Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c |
32 | vvex 4110 | . . 3 | |
33 | swapex 4743 | . . . . . . . 8 Swap | |
34 | 33 | si3ex 5807 | . . . . . . 7 SI3 Swap |
35 | 34 | ins4ex 5800 | . . . . . 6 Ins4 SI3 Swap |
36 | ssetex 4745 | . . . . . . . 8 S | |
37 | 36 | ins2ex 5798 | . . . . . . 7 Ins2 S |
38 | 37 | ins2ex 5798 | . . . . . 6 Ins2 Ins2 S |
39 | 35, 38 | inex 4106 | . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S |
40 | 1cex 4143 | . . . . 5 1c | |
41 | 39, 40 | imaex 4748 | . . . 4 Ins4 SI3 Swap Ins2 Ins2 S 1c |
42 | 41, 40 | imaex 4748 | . . 3 Ins4 SI3 Swap Ins2 Ins2 S 1c1c |
43 | 32, 42 | mptexlem 5811 | . 2 ∼ Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c |
44 | 31, 43 | eqeltri 2423 | 1 Dom |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 ∼ ccompl 3206 cin 3209 csymdif 3210 csn 3738 1cc1c 4135 cop 4562 class class class wbr 4640 Swap cswap 4719 S csset 4720 cima 4723 cxp 4771 ccnv 4772 cdm 4773 cmpt 5652 Ins2 cins2 5750 Ins3 cins3 5752 Ins4 cins4 5756 SI3 csi3 5758 Dom cdomfn 5770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-2nd 4798 df-mpt 5653 df-txp 5737 df-ins2 5751 df-ins3 5753 df-ins4 5757 df-si3 5759 df-domfn 5771 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |