NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  domfnex Unicode version

Theorem domfnex 5870
Description: The domain function is stratified. (Contributed by Scott Fenton, 9-Aug-2019.)
Assertion
Ref Expression
domfnex Dom

Proof of Theorem domfnex
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-domfn 5770 . . 3 Dom
2 elin 3219 . . . . . . . . 9 Ins4 SI3 Swap Ins2 Ins2 S Ins4 SI3 Swap Ins2 Ins2 S
3 vex 2862 . . . . . . . . . . . 12
43oqelins4 5794 . . . . . . . . . . 11 Ins4 SI3 Swap SI3 Swap
5 vex 2862 . . . . . . . . . . . . 13
6 vex 2862 . . . . . . . . . . . . 13
7 vex 2862 . . . . . . . . . . . . 13
85, 6, 7otsnelsi3 5805 . . . . . . . . . . . 12 SI3 Swap Swap
9 df-br 4640 . . . . . . . . . . . 12 Swap Swap
106, 7brswap2 4860 . . . . . . . . . . . 12 Swap
118, 9, 103bitr2i 264 . . . . . . . . . . 11 SI3 Swap
124, 11bitri 240 . . . . . . . . . 10 Ins4 SI3 Swap
13 snex 4111 . . . . . . . . . . . 12
1413otelins2 5791 . . . . . . . . . . 11 Ins2 Ins2 S Ins2 S
15 snex 4111 . . . . . . . . . . . . 13
1615otelins2 5791 . . . . . . . . . . . 12 Ins2 S S
175, 3opelssetsn 4760 . . . . . . . . . . . 12 S
1816, 17bitri 240 . . . . . . . . . . 11 Ins2 S
1914, 18bitri 240 . . . . . . . . . 10 Ins2 Ins2 S
2012, 19anbi12i 678 . . . . . . . . 9 Ins4 SI3 Swap Ins2 Ins2 S
212, 20bitri 240 . . . . . . . 8 Ins4 SI3 Swap Ins2 Ins2 S
2221exbii 1582 . . . . . . 7 Ins4 SI3 Swap Ins2 Ins2 S
23 elima1c 4947 . . . . . . 7 Ins4 SI3 Swap Ins2 Ins2 S 1c Ins4 SI3 Swap Ins2 Ins2 S
24 df-clel 2349 . . . . . . 7
2522, 23, 243bitr4i 268 . . . . . 6 Ins4 SI3 Swap Ins2 Ins2 S 1c
2625exbii 1582 . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S 1c
27 elima1c 4947 . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S 1c1c Ins4 SI3 Swap Ins2 Ins2 S 1c
28 eldm2 4899 . . . . 5
2926, 27, 283bitr4i 268 . . . 4 Ins4 SI3 Swap Ins2 Ins2 S 1c1c
3029releqmpt 5808 . . 3 Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c
311, 30eqtr4i 2376 . 2 Dom Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c
32 vvex 4109 . . 3
33 swapex 4742 . . . . . . . 8 Swap
3433si3ex 5806 . . . . . . 7 SI3 Swap
3534ins4ex 5799 . . . . . 6 Ins4 SI3 Swap
36 ssetex 4744 . . . . . . . 8 S
3736ins2ex 5797 . . . . . . 7 Ins2 S
3837ins2ex 5797 . . . . . 6 Ins2 Ins2 S
3935, 38inex 4105 . . . . 5 Ins4 SI3 Swap Ins2 Ins2 S
40 1cex 4142 . . . . 5 1c
4139, 40imaex 4747 . . . 4 Ins4 SI3 Swap Ins2 Ins2 S 1c
4241, 40imaex 4747 . . 3 Ins4 SI3 Swap Ins2 Ins2 S 1c1c
4332, 42mptexlem 5810 . 2 Ins3 S Ins2 Ins4 SI3 Swap Ins2 Ins2 S 1c1c1c
4431, 43eqeltri 2423 1 Dom
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   wceq 1642   wcel 1710  cvv 2859   ∼ ccompl 3205   cin 3208   csymdif 3209  csn 3737  1cc1c 4134  cop 4561   class class class wbr 4639   Swap cswap 4718   S csset 4719  cima 4722   cxp 4770  ccnv 4771   cdm 4772   cmpt 5651   Ins2 cins2 5749   Ins3 cins3 5751   Ins4 cins4 5755   SI3 csi3 5757   Dom cdomfn 5769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-2nd 4797  df-mpt 5652  df-txp 5736  df-ins2 5750  df-ins3 5752  df-ins4 5756  df-si3 5758  df-domfn 5770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator