New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addc4 | GIF version |
Description: Swap arguments two and three in quadruple cardinal addition. (Contributed by SF, 25-Jan-2015.) |
Ref | Expression |
---|---|
addc4 | ⊢ ((A +c B) +c (C +c D)) = ((A +c C) +c (B +c D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addc32 4417 | . . 3 ⊢ ((A +c B) +c C) = ((A +c C) +c B) | |
2 | 1 | addceq1i 4387 | . 2 ⊢ (((A +c B) +c C) +c D) = (((A +c C) +c B) +c D) |
3 | addcass 4416 | . 2 ⊢ (((A +c B) +c C) +c D) = ((A +c B) +c (C +c D)) | |
4 | addcass 4416 | . 2 ⊢ (((A +c C) +c B) +c D) = ((A +c C) +c (B +c D)) | |
5 | 2, 3, 4 | 3eqtr3i 2381 | 1 ⊢ ((A +c B) +c (C +c D)) = ((A +c C) +c (B +c D)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: addc6 4419 evenodddisj 4517 nncdiv3 6278 nnc3n3p2 6280 nchoicelem1 6290 nchoicelem2 6291 |
Copyright terms: Public domain | W3C validator |