New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovdir | GIF version |
Description: Reverse distributive law. (Contributed by set.mm contributors, 26-Aug-1995.) |
Ref | Expression |
---|---|
caoprd.1 | ⊢ A ∈ V |
caoprd.2 | ⊢ B ∈ V |
caoprd.3 | ⊢ C ∈ V |
caoprd.com | ⊢ (xGy) = (yGx) |
caoprd.distr | ⊢ (xG(yFz)) = ((xGy)F(xGz)) |
Ref | Expression |
---|---|
caovdir | ⊢ ((AFB)GC) = ((AGC)F(BGC)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caoprd.3 | . . 3 ⊢ C ∈ V | |
2 | caoprd.1 | . . 3 ⊢ A ∈ V | |
3 | caoprd.2 | . . 3 ⊢ B ∈ V | |
4 | caoprd.distr | . . 3 ⊢ (xG(yFz)) = ((xGy)F(xGz)) | |
5 | 1, 2, 3, 4 | caovdi 5635 | . 2 ⊢ (CG(AFB)) = ((CGA)F(CGB)) |
6 | ovex 5552 | . . 3 ⊢ (AFB) ∈ V | |
7 | caoprd.com | . . 3 ⊢ (xGy) = (yGx) | |
8 | 1, 6, 7 | caovcom 5626 | . 2 ⊢ (CG(AFB)) = ((AFB)GC) |
9 | 1, 2, 7 | caovcom 5626 | . . 3 ⊢ (CGA) = (AGC) |
10 | 1, 3, 7 | caovcom 5626 | . . 3 ⊢ (CGB) = (BGC) |
11 | 9, 10 | oveq12i 5536 | . 2 ⊢ ((CGA)F(CGB)) = ((AGC)F(BGC)) |
12 | 5, 8, 11 | 3eqtr3i 2381 | 1 ⊢ ((AFB)GC) = ((AGC)F(BGC)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: caovdilem 5644 |
Copyright terms: Public domain | W3C validator |