NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tfin1c GIF version

Theorem tfin1c 4500
Description: The finite T operator is idempotent over 1c. Theorem X.1.34(a) of [Rosser] p. 529. (Contributed by SF, 30-Jan-2015.)
Assertion
Ref Expression
tfin1c Tfin 1c = 1c

Proof of Theorem tfin1c
StepHypRef Expression
1 peano1 4403 . . 3 0c Nn
2 addcid2 4408 . . . 4 (0c +c 1c) = 1c
3 1cex 4143 . . . . . 6 1c V
43snel1c 4141 . . . . 5 {1c} 1c
5 ne0i 3557 . . . . 5 ({1c} 1c → 1c)
64, 5ax-mp 5 . . . 4 1c
72, 6eqnetri 2534 . . 3 (0c +c 1c) ≠
8 tfinsuc 4499 . . 3 ((0c Nn (0c +c 1c) ≠ ) → Tfin (0c +c 1c) = ( Tfin 0c +c 1c))
91, 7, 8mp2an 653 . 2 Tfin (0c +c 1c) = ( Tfin 0c +c 1c)
10 tfineq 4489 . . 3 ((0c +c 1c) = 1cTfin (0c +c 1c) = Tfin 1c)
112, 10ax-mp 5 . 2 Tfin (0c +c 1c) = Tfin 1c
12 tfin0c 4498 . . . 4 Tfin 0c = 0c
1312addceq1i 4387 . . 3 ( Tfin 0c +c 1c) = (0c +c 1c)
1413, 2eqtri 2373 . 2 ( Tfin 0c +c 1c) = 1c
159, 11, 143eqtr3i 2381 1 Tfin 1c = 1c
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  wne 2517  c0 3551  {csn 3738  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   +c cplc 4376   Tfin ctfin 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-tfin 4444
This theorem is referenced by:  oddtfin  4519  sfintfin  4533
  Copyright terms: Public domain W3C validator