New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tfin1c | GIF version |
Description: The finite T operator is idempotent over 1c. Theorem X.1.34(a) of [Rosser] p. 529. (Contributed by SF, 30-Jan-2015.) |
Ref | Expression |
---|---|
tfin1c | ⊢ Tfin 1c = 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 4403 | . . 3 ⊢ 0c ∈ Nn | |
2 | addcid2 4408 | . . . 4 ⊢ (0c +c 1c) = 1c | |
3 | 1cex 4143 | . . . . . 6 ⊢ 1c ∈ V | |
4 | 3 | snel1c 4141 | . . . . 5 ⊢ {1c} ∈ 1c |
5 | ne0i 3557 | . . . . 5 ⊢ ({1c} ∈ 1c → 1c ≠ ∅) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 1c ≠ ∅ |
7 | 2, 6 | eqnetri 2534 | . . 3 ⊢ (0c +c 1c) ≠ ∅ |
8 | tfinsuc 4499 | . . 3 ⊢ ((0c ∈ Nn ∧ (0c +c 1c) ≠ ∅) → Tfin (0c +c 1c) = ( Tfin 0c +c 1c)) | |
9 | 1, 7, 8 | mp2an 653 | . 2 ⊢ Tfin (0c +c 1c) = ( Tfin 0c +c 1c) |
10 | tfineq 4489 | . . 3 ⊢ ((0c +c 1c) = 1c → Tfin (0c +c 1c) = Tfin 1c) | |
11 | 2, 10 | ax-mp 5 | . 2 ⊢ Tfin (0c +c 1c) = Tfin 1c |
12 | tfin0c 4498 | . . . 4 ⊢ Tfin 0c = 0c | |
13 | 12 | addceq1i 4387 | . . 3 ⊢ ( Tfin 0c +c 1c) = (0c +c 1c) |
14 | 13, 2 | eqtri 2373 | . 2 ⊢ ( Tfin 0c +c 1c) = 1c |
15 | 9, 11, 14 | 3eqtr3i 2381 | 1 ⊢ Tfin 1c = 1c |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∅c0 3551 {csn 3738 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 +c cplc 4376 Tfin ctfin 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-tfin 4444 |
This theorem is referenced by: oddtfin 4519 sfintfin 4533 |
Copyright terms: Public domain | W3C validator |