![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > dmcosseq | GIF version |
Description: Domain of a composition. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 28-May-1998.) (Revised by set.mm contributors, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcosseq | ⊢ (ran B ⊆ dom A → dom (A ∘ B) = dom B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 4971 | . . 3 ⊢ dom (A ∘ B) ⊆ dom B | |
2 | 1 | a1i 10 | . 2 ⊢ (ran B ⊆ dom A → dom (A ∘ B) ⊆ dom B) |
3 | brelrn 4960 | . . . . . . . . . 10 ⊢ (xBy → y ∈ ran B) | |
4 | ssel 3267 | . . . . . . . . . 10 ⊢ (ran B ⊆ dom A → (y ∈ ran B → y ∈ dom A)) | |
5 | 3, 4 | syl5 28 | . . . . . . . . 9 ⊢ (ran B ⊆ dom A → (xBy → y ∈ dom A)) |
6 | eldm 4898 | . . . . . . . . 9 ⊢ (y ∈ dom A ↔ ∃z yAz) | |
7 | 5, 6 | syl6ib 217 | . . . . . . . 8 ⊢ (ran B ⊆ dom A → (xBy → ∃z yAz)) |
8 | 7 | ancld 536 | . . . . . . 7 ⊢ (ran B ⊆ dom A → (xBy → (xBy ∧ ∃z yAz))) |
9 | 19.42v 1905 | . . . . . . 7 ⊢ (∃z(xBy ∧ yAz) ↔ (xBy ∧ ∃z yAz)) | |
10 | 8, 9 | syl6ibr 218 | . . . . . 6 ⊢ (ran B ⊆ dom A → (xBy → ∃z(xBy ∧ yAz))) |
11 | 10 | eximdv 1622 | . . . . 5 ⊢ (ran B ⊆ dom A → (∃y xBy → ∃y∃z(xBy ∧ yAz))) |
12 | brco 4883 | . . . . . . 7 ⊢ (x(A ∘ B)z ↔ ∃y(xBy ∧ yAz)) | |
13 | 12 | exbii 1582 | . . . . . 6 ⊢ (∃z x(A ∘ B)z ↔ ∃z∃y(xBy ∧ yAz)) |
14 | excom 1741 | . . . . . 6 ⊢ (∃z∃y(xBy ∧ yAz) ↔ ∃y∃z(xBy ∧ yAz)) | |
15 | 13, 14 | bitri 240 | . . . . 5 ⊢ (∃z x(A ∘ B)z ↔ ∃y∃z(xBy ∧ yAz)) |
16 | 11, 15 | syl6ibr 218 | . . . 4 ⊢ (ran B ⊆ dom A → (∃y xBy → ∃z x(A ∘ B)z)) |
17 | eldm 4898 | . . . 4 ⊢ (x ∈ dom B ↔ ∃y xBy) | |
18 | eldm 4898 | . . . 4 ⊢ (x ∈ dom (A ∘ B) ↔ ∃z x(A ∘ B)z) | |
19 | 16, 17, 18 | 3imtr4g 261 | . . 3 ⊢ (ran B ⊆ dom A → (x ∈ dom B → x ∈ dom (A ∘ B))) |
20 | 19 | ssrdv 3278 | . 2 ⊢ (ran B ⊆ dom A → dom B ⊆ dom (A ∘ B)) |
21 | 2, 20 | eqssd 3289 | 1 ⊢ (ran B ⊆ dom A → dom (A ∘ B) = dom B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ⊆ wss 3257 class class class wbr 4639 ∘ ccom 4721 dom cdm 4772 ran crn 4773 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 |
This theorem is referenced by: dmcoeq 4974 fnco 5191 sbthlem3 6205 |
Copyright terms: Public domain | W3C validator |