New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbeq1a | GIF version |
Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1a | ⊢ (x = A → B = [A / x]B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbid 3144 | . 2 ⊢ [x / x]B = B | |
2 | csbeq1 3140 | . 2 ⊢ (x = A → [x / x]B = [A / x]B) | |
3 | 1, 2 | syl5eqr 2399 | 1 ⊢ (x = A → B = [A / x]B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbhypf 3172 csbiebt 3173 sbcnestgf 3184 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 csbing 3463 csbifg 3691 sbcbrg 4686 opeliunxp 4821 csbima12g 4956 csbovg 5553 fvmpts 5702 fvmpt2i 5704 fvmptex 5722 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |