| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > csbco | GIF version | ||
| Description: Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbco | ⊢ [A / y][y / x]B = [A / x]B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3138 | . . . . . 6 ⊢ [y / x]B = {z ∣ [̣y / x]̣z ∈ B} | |
| 2 | 1 | eqabri 2461 | . . . . 5 ⊢ (z ∈ [y / x]B ↔ [̣y / x]̣z ∈ B) |
| 3 | 2 | sbcbii 3102 | . . . 4 ⊢ ([̣A / y]̣z ∈ [y / x]B ↔ [̣A / y]̣[̣y / x]̣z ∈ B) |
| 4 | sbcco 3069 | . . . 4 ⊢ ([̣A / y]̣[̣y / x]̣z ∈ B ↔ [̣A / x]̣z ∈ B) | |
| 5 | 3, 4 | bitri 240 | . . 3 ⊢ ([̣A / y]̣z ∈ [y / x]B ↔ [̣A / x]̣z ∈ B) |
| 6 | 5 | abbii 2466 | . 2 ⊢ {z ∣ [̣A / y]̣z ∈ [y / x]B} = {z ∣ [̣A / x]̣z ∈ B} |
| 7 | df-csb 3138 | . 2 ⊢ [A / y][y / x]B = {z ∣ [̣A / y]̣z ∈ [y / x]B} | |
| 8 | df-csb 3138 | . 2 ⊢ [A / x]B = {z ∣ [̣A / x]̣z ∈ B} | |
| 9 | 6, 7, 8 | 3eqtr4i 2383 | 1 ⊢ [A / y][y / x]B = [A / x]B |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
| This theorem is referenced by: csbvarg 3164 csbnest1g 3189 eqerlem 5961 |
| Copyright terms: Public domain | W3C validator |