NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  difprsn2 GIF version

Theorem difprsn2 3849
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2 (AB → ({A, B} {B}) = {A})

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 3799 . . 3 {A, B} = {B, A}
21difeq1i 3382 . 2 ({A, B} {B}) = ({B, A} {B})
3 necom 2598 . . 3 (ABBA)
4 difprsn1 3848 . . 3 (BA → ({B, A} {B}) = {A})
53, 4sylbi 187 . 2 (AB → ({B, A} {B}) = {A})
62, 5syl5eq 2397 1 (AB → ({A, B} {B}) = {A})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  wne 2517   cdif 3207  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator