New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disj5 | GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by SF, 5-Feb-2015.) |
Ref | Expression |
---|---|
disj5 | ⊢ ((A ∩ B) = ∅ ↔ A ⊆ ∼ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . 5 ⊢ x ∈ V | |
2 | 1 | elcompl 3225 | . . . 4 ⊢ (x ∈ ∼ B ↔ ¬ x ∈ B) |
3 | 2 | ralbii 2638 | . . 3 ⊢ (∀x ∈ A x ∈ ∼ B ↔ ∀x ∈ A ¬ x ∈ B) |
4 | df-ral 2619 | . . 3 ⊢ (∀x ∈ A x ∈ ∼ B ↔ ∀x(x ∈ A → x ∈ ∼ B)) | |
5 | 3, 4 | bitr3i 242 | . 2 ⊢ (∀x ∈ A ¬ x ∈ B ↔ ∀x(x ∈ A → x ∈ ∼ B)) |
6 | disj 3591 | . 2 ⊢ ((A ∩ B) = ∅ ↔ ∀x ∈ A ¬ x ∈ B) | |
7 | dfss2 3262 | . 2 ⊢ (A ⊆ ∼ B ↔ ∀x(x ∈ A → x ∈ ∼ B)) | |
8 | 5, 6, 7 | 3bitr4i 268 | 1 ⊢ ((A ∩ B) = ∅ ↔ A ⊆ ∼ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2614 ∼ ccompl 3205 ∩ cin 3208 ⊆ wss 3257 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: intirr 5029 |
Copyright terms: Public domain | W3C validator |