![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > intirr | GIF version |
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Revised by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intirr | ⊢ ((R ∩ I ) = ∅ ↔ ∀x ¬ xRx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3448 | . . . 4 ⊢ (R ∩ I ) = ( I ∩ R) | |
2 | 1 | eqeq1i 2360 | . . 3 ⊢ ((R ∩ I ) = ∅ ↔ ( I ∩ R) = ∅) |
3 | disj5 3890 | . . 3 ⊢ (( I ∩ R) = ∅ ↔ I ⊆ ∼ R) | |
4 | ssrel 4844 | . . 3 ⊢ ( I ⊆ ∼ R ↔ ∀x∀y(〈x, y〉 ∈ I → 〈x, y〉 ∈ ∼ R)) | |
5 | 2, 3, 4 | 3bitri 262 | . 2 ⊢ ((R ∩ I ) = ∅ ↔ ∀x∀y(〈x, y〉 ∈ I → 〈x, y〉 ∈ ∼ R)) |
6 | vex 2862 | . . . . . 6 ⊢ y ∈ V | |
7 | 6 | ideq 4870 | . . . . 5 ⊢ (x I y ↔ x = y) |
8 | df-br 4640 | . . . . 5 ⊢ (x I y ↔ 〈x, y〉 ∈ I ) | |
9 | 7, 8 | bitr3i 242 | . . . 4 ⊢ (x = y ↔ 〈x, y〉 ∈ I ) |
10 | df-br 4640 | . . . . . 6 ⊢ (xRy ↔ 〈x, y〉 ∈ R) | |
11 | 10 | notbii 287 | . . . . 5 ⊢ (¬ xRy ↔ ¬ 〈x, y〉 ∈ R) |
12 | vex 2862 | . . . . . . 7 ⊢ x ∈ V | |
13 | 12, 6 | opex 4588 | . . . . . 6 ⊢ 〈x, y〉 ∈ V |
14 | 13 | elcompl 3225 | . . . . 5 ⊢ (〈x, y〉 ∈ ∼ R ↔ ¬ 〈x, y〉 ∈ R) |
15 | 11, 14 | bitr4i 243 | . . . 4 ⊢ (¬ xRy ↔ 〈x, y〉 ∈ ∼ R) |
16 | 9, 15 | imbi12i 316 | . . 3 ⊢ ((x = y → ¬ xRy) ↔ (〈x, y〉 ∈ I → 〈x, y〉 ∈ ∼ R)) |
17 | 16 | 2albii 1567 | . 2 ⊢ (∀x∀y(x = y → ¬ xRy) ↔ ∀x∀y(〈x, y〉 ∈ I → 〈x, y〉 ∈ ∼ R)) |
18 | equcom 1680 | . . . . . 6 ⊢ (x = y ↔ y = x) | |
19 | 18 | imbi1i 315 | . . . . 5 ⊢ ((x = y → ¬ xRy) ↔ (y = x → ¬ xRy)) |
20 | 19 | albii 1566 | . . . 4 ⊢ (∀y(x = y → ¬ xRy) ↔ ∀y(y = x → ¬ xRy)) |
21 | breq2 4643 | . . . . . 6 ⊢ (y = x → (xRy ↔ xRx)) | |
22 | 21 | notbid 285 | . . . . 5 ⊢ (y = x → (¬ xRy ↔ ¬ xRx)) |
23 | 12, 22 | ceqsalv 2885 | . . . 4 ⊢ (∀y(y = x → ¬ xRy) ↔ ¬ xRx) |
24 | 20, 23 | bitri 240 | . . 3 ⊢ (∀y(x = y → ¬ xRy) ↔ ¬ xRx) |
25 | 24 | albii 1566 | . 2 ⊢ (∀x∀y(x = y → ¬ xRy) ↔ ∀x ¬ xRx) |
26 | 5, 17, 25 | 3bitr2i 264 | 1 ⊢ ((R ∩ I ) = ∅ ↔ ∀x ¬ xRx) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∼ ccompl 3205 ∩ cin 3208 ⊆ wss 3257 ∅c0 3550 〈cop 4561 class class class wbr 4639 I cid 4763 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-id 4767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |