New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elopk | GIF version |
Description: Membership in a Kuratowski ordered pair. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
elopk | ⊢ (A ∈ ⟪B, C⟫ ↔ (A = {B} ∨ A = {B, C})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opk 4059 | . . 3 ⊢ ⟪B, C⟫ = {{B}, {B, C}} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ ⟪B, C⟫ ↔ A ∈ {{B}, {B, C}}) |
3 | snex 4112 | . . 3 ⊢ {B} ∈ V | |
4 | prex 4113 | . . 3 ⊢ {B, C} ∈ V | |
5 | 3, 4 | elpr2 3753 | . 2 ⊢ (A ∈ {{B}, {B, C}} ↔ (A = {B} ∨ A = {B, C})) |
6 | 2, 5 | bitri 240 | 1 ⊢ (A ∈ ⟪B, C⟫ ↔ (A = {B} ∨ A = {B, C})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 = wceq 1642 ∈ wcel 1710 {csn 3738 {cpr 3739 ⟪copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkth1g 4131 |
Copyright terms: Public domain | W3C validator |