NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elopk GIF version

Theorem elopk 4130
Description: Membership in a Kuratowski ordered pair. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
elopk (A B, C⟫ ↔ (A = {B} A = {B, C}))

Proof of Theorem elopk
StepHypRef Expression
1 df-opk 4059 . . 3 B, C⟫ = {{B}, {B, C}}
21eleq2i 2417 . 2 (A B, C⟫ ↔ A {{B}, {B, C}})
3 snex 4112 . . 3 {B} V
4 prex 4113 . . 3 {B, C} V
53, 4elpr2 3753 . 2 (A {{B}, {B, C}} ↔ (A = {B} A = {B, C}))
62, 5bitri 240 1 (A B, C⟫ ↔ (A = {B} A = {B, C}))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   = wceq 1642   wcel 1710  {csn 3738  {cpr 3739  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by:  opkth1g  4131
  Copyright terms: Public domain W3C validator