Step | Hyp | Ref
| Expression |
1 | | brin 4693 |
. . . 4
⊢ (A((◡1st ∘ R) ∩
(◡2nd ∘ S))B ↔ (A(◡1st ∘ R)B ∧ A(◡2nd ∘ S)B)) |
2 | | brco 4883 |
. . . . 5
⊢ (A(◡1st ∘ R)B ↔ ∃x(ARx ∧ x◡1st B)) |
3 | | brco 4883 |
. . . . 5
⊢ (A(◡2nd ∘ S)B ↔ ∃y(ASy ∧ y◡2nd B)) |
4 | 2, 3 | anbi12i 678 |
. . . 4
⊢ ((A(◡1st ∘ R)B ∧ A(◡2nd ∘ S)B) ↔ (∃x(ARx ∧ x◡1st B) ∧ ∃y(ASy ∧ y◡2nd B))) |
5 | 1, 4 | bitri 240 |
. . 3
⊢ (A((◡1st ∘ R) ∩
(◡2nd ∘ S))B ↔ (∃x(ARx ∧ x◡1st B) ∧ ∃y(ASy ∧ y◡2nd B))) |
6 | | df-txp 5736 |
. . . 4
⊢ (R ⊗ S) =
((◡1st ∘ R) ∩
(◡2nd ∘ S)) |
7 | 6 | breqi 4645 |
. . 3
⊢ (A(R ⊗
S)B
↔ A((◡1st ∘ R) ∩
(◡2nd ∘ S))B) |
8 | | eeanv 1913 |
. . 3
⊢ (∃x∃y((ARx ∧ x◡1st B) ∧ (ASy ∧ y◡2nd B)) ↔ (∃x(ARx ∧ x◡1st B) ∧ ∃y(ASy ∧ y◡2nd B))) |
9 | 5, 7, 8 | 3bitr4i 268 |
. 2
⊢ (A(R ⊗
S)B
↔ ∃x∃y((ARx ∧ x◡1st B) ∧ (ASy ∧ y◡2nd B))) |
10 | | an4 797 |
. . . 4
⊢ (((ARx ∧ x◡1st B) ∧ (ASy ∧ y◡2nd B)) ↔ ((ARx ∧ ASy) ∧ (x◡1st B ∧ y◡2nd B))) |
11 | | ancom 437 |
. . . . 5
⊢ (((ARx ∧ ASy) ∧ B = 〈x, y〉) ↔ (B =
〈x,
y〉 ∧ (ARx ∧ ASy))) |
12 | | brcnv 4892 |
. . . . . . . . 9
⊢ (x◡1st B ↔ B1st x) |
13 | | vex 2862 |
. . . . . . . . . 10
⊢ x ∈
V |
14 | 13 | br1st 4858 |
. . . . . . . . 9
⊢ (B1st x ↔ ∃z B = 〈x, z〉) |
15 | 12, 14 | bitri 240 |
. . . . . . . 8
⊢ (x◡1st B ↔ ∃z B = 〈x, z〉) |
16 | | brcnv 4892 |
. . . . . . . . 9
⊢ (y◡2nd B ↔ B2nd y) |
17 | | vex 2862 |
. . . . . . . . . 10
⊢ y ∈
V |
18 | 17 | br2nd 4859 |
. . . . . . . . 9
⊢ (B2nd y ↔ ∃w B = 〈w, y〉) |
19 | 16, 18 | bitri 240 |
. . . . . . . 8
⊢ (y◡2nd B ↔ ∃w B = 〈w, y〉) |
20 | 15, 19 | anbi12i 678 |
. . . . . . 7
⊢ ((x◡1st B ∧ y◡2nd B) ↔ (∃z B = 〈x, z〉 ∧ ∃w B = 〈w, y〉)) |
21 | | eeanv 1913 |
. . . . . . 7
⊢ (∃z∃w(B = 〈x, z〉 ∧ B = 〈w, y〉) ↔ (∃z B = 〈x, z〉 ∧ ∃w B = 〈w, y〉)) |
22 | | eqtr2 2371 |
. . . . . . . . . . 11
⊢ ((B = 〈x, z〉 ∧ B = 〈w, y〉) → 〈x, z〉 = 〈w, y〉) |
23 | | opth 4602 |
. . . . . . . . . . . . . 14
⊢ (〈x, z〉 = 〈w, y〉 ↔
(x = w
∧ z =
y)) |
24 | 23 | simplbi 446 |
. . . . . . . . . . . . 13
⊢ (〈x, z〉 = 〈w, y〉 → x = w) |
25 | 24 | eqcomd 2358 |
. . . . . . . . . . . 12
⊢ (〈x, z〉 = 〈w, y〉 → w = x) |
26 | 25 | opeq1d 4584 |
. . . . . . . . . . 11
⊢ (〈x, z〉 = 〈w, y〉 → 〈w, y〉 = 〈x, y〉) |
27 | 22, 26 | syl 15 |
. . . . . . . . . 10
⊢ ((B = 〈x, z〉 ∧ B = 〈w, y〉) → 〈w, y〉 = 〈x, y〉) |
28 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (B = 〈w, y〉 → (B =
〈x,
y〉 ↔
〈w,
y〉 =
〈x,
y〉)) |
29 | 28 | adantl 452 |
. . . . . . . . . 10
⊢ ((B = 〈x, z〉 ∧ B = 〈w, y〉) → (B =
〈x,
y〉 ↔
〈w,
y〉 =
〈x,
y〉)) |
30 | 27, 29 | mpbird 223 |
. . . . . . . . 9
⊢ ((B = 〈x, z〉 ∧ B = 〈w, y〉) → B =
〈x,
y〉) |
31 | 30 | exlimivv 1635 |
. . . . . . . 8
⊢ (∃z∃w(B = 〈x, z〉 ∧ B = 〈w, y〉) → B =
〈x,
y〉) |
32 | | opeq2 4579 |
. . . . . . . . . . . 12
⊢ (z = y →
〈x,
z〉 =
〈x,
y〉) |
33 | 32 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (z = y →
(B = 〈x, z〉 ↔ B = 〈x, y〉)) |
34 | | opeq1 4578 |
. . . . . . . . . . . 12
⊢ (w = x →
〈w,
y〉 =
〈x,
y〉) |
35 | 34 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (w = x →
(B = 〈w, y〉 ↔ B = 〈x, y〉)) |
36 | 33, 35 | bi2anan9 843 |
. . . . . . . . . 10
⊢ ((z = y ∧ w = x) → ((B =
〈x,
z〉 ∧ B = 〈w, y〉) ↔
(B = 〈x, y〉 ∧ B = 〈x, y〉))) |
37 | 17, 13, 36 | spc2ev 2947 |
. . . . . . . . 9
⊢ ((B = 〈x, y〉 ∧ B = 〈x, y〉) → ∃z∃w(B = 〈x, z〉 ∧ B = 〈w, y〉)) |
38 | 37 | anidms 626 |
. . . . . . . 8
⊢ (B = 〈x, y〉 → ∃z∃w(B = 〈x, z〉 ∧ B = 〈w, y〉)) |
39 | 31, 38 | impbii 180 |
. . . . . . 7
⊢ (∃z∃w(B = 〈x, z〉 ∧ B = 〈w, y〉) ↔ B =
〈x,
y〉) |
40 | 20, 21, 39 | 3bitr2i 264 |
. . . . . 6
⊢ ((x◡1st B ∧ y◡2nd B) ↔ B =
〈x,
y〉) |
41 | 40 | anbi2i 675 |
. . . . 5
⊢ (((ARx ∧ ASy) ∧ (x◡1st B ∧ y◡2nd B)) ↔ ((ARx ∧ ASy) ∧ B = 〈x, y〉)) |
42 | | 3anass 938 |
. . . . 5
⊢ ((B = 〈x, y〉 ∧ ARx ∧ ASy) ↔ (B =
〈x,
y〉 ∧ (ARx ∧ ASy))) |
43 | 11, 41, 42 | 3bitr4i 268 |
. . . 4
⊢ (((ARx ∧ ASy) ∧ (x◡1st B ∧ y◡2nd B)) ↔ (B =
〈x,
y〉 ∧ ARx ∧ ASy)) |
44 | 10, 43 | bitri 240 |
. . 3
⊢ (((ARx ∧ x◡1st B) ∧ (ASy ∧ y◡2nd B)) ↔ (B =
〈x,
y〉 ∧ ARx ∧ ASy)) |
45 | 44 | 2exbii 1583 |
. 2
⊢ (∃x∃y((ARx ∧ x◡1st B) ∧ (ASy ∧ y◡2nd B)) ↔ ∃x∃y(B = 〈x, y〉 ∧ ARx ∧ ASy)) |
46 | 9, 45 | bitri 240 |
1
⊢ (A(R ⊗
S)B
↔ ∃x∃y(B = 〈x, y〉 ∧ ARx ∧ ASy)) |