NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncfinprop GIF version

Theorem ncfinprop 4475
Description: Properties of finite cardinal number. Theorem X.1.23 of [Rosser] p. 527 (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
ncfinprop ((V Fin A V) → ( Ncfin A Nn A Ncfin A))

Proof of Theorem ncfinprop
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 df-ncfin 4443 . . . 4 Ncfin A = (℩x(x Nn A x))
2 vfinnc 4472 . . . . 5 ((A V V Fin ) → ∃!x Nn A x)
3 reiotacl 4365 . . . . 5 (∃!x Nn A x → (℩x(x Nn A x)) Nn )
42, 3syl 15 . . . 4 ((A V V Fin ) → (℩x(x Nn A x)) Nn )
51, 4syl5eqel 2437 . . 3 ((A V V Fin ) → Ncfin A Nn )
61eqcomi 2357 . . . 4 (℩x(x Nn A x)) = Ncfin A
7 eleq2 2414 . . . . . 6 (x = Ncfin A → (A xA Ncfin A))
87reiota2 4369 . . . . 5 (( Ncfin A Nn ∃!x Nn A x) → (A Ncfin A ↔ (℩x(x Nn A x)) = Ncfin A))
95, 2, 8syl2anc 642 . . . 4 ((A V V Fin ) → (A Ncfin A ↔ (℩x(x Nn A x)) = Ncfin A))
106, 9mpbiri 224 . . 3 ((A V V Fin ) → A Ncfin A)
115, 10jca 518 . 2 ((A V V Fin ) → ( Ncfin A Nn A Ncfin A))
1211ancoms 439 1 ((V Fin A V) → ( Ncfin A Nn A Ncfin A))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  ∃!wreu 2617  Vcvv 2860  cio 4338   Nn cnnc 4374   Fin cfin 4377   Ncfin cncfin 4435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-ncfin 4443
This theorem is referenced by:  ncfindi  4476  ncfinsn  4477  ncfineleq  4478  ncfintfin  4496  vfinspnn  4542  1cvsfin  4543  vfintle  4547  vfin1cltv  4548  vfinncvntnn  4549  vfinspsslem1  4551  vfinncsp  4555  vinf  4556
  Copyright terms: Public domain W3C validator