| Step | Hyp | Ref
| Expression |
| 1 | | vex 2863 |
. . . . . 6
⊢ m ∈
V |
| 2 | 1 | elcompl 3226 |
. . . . 5
⊢ (m ∈ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ ¬ m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅}))) |
| 3 | | brres 4950 |
. . . . . . . . . 10
⊢ (t(1st ↾ (◡2nd “
{0c}))m ↔ (t1st m ∧ t ∈ (◡2nd “
{0c}))) |
| 4 | | eliniseg 5021 |
. . . . . . . . . . 11
⊢ (t ∈ (◡2nd “
{0c}) ↔ t2nd
0c) |
| 5 | 4 | anbi2i 675 |
. . . . . . . . . 10
⊢ ((t1st m ∧ t ∈ (◡2nd “
{0c})) ↔ (t1st m ∧ t2nd
0c)) |
| 6 | | 0cex 4393 |
. . . . . . . . . . 11
⊢
0c ∈
V |
| 7 | 1, 6 | op1st2nd 5791 |
. . . . . . . . . 10
⊢ ((t1st m ∧ t2nd 0c) ↔
t = 〈m,
0c〉) |
| 8 | 3, 5, 7 | 3bitri 262 |
. . . . . . . . 9
⊢ (t(1st ↾ (◡2nd “
{0c}))m ↔ t = 〈m, 0c〉) |
| 9 | 8 | rexbii 2640 |
. . . . . . . 8
⊢ (∃t ∈ (◡ FullFun ↑c “ {∅})t(1st ↾ (◡2nd “
{0c}))m ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t = 〈m,
0c〉) |
| 10 | | elima 4755 |
. . . . . . . 8
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t(1st ↾ (◡2nd “
{0c}))m) |
| 11 | | risset 2662 |
. . . . . . . 8
⊢ (〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅}) ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t = 〈m,
0c〉) |
| 12 | 9, 10, 11 | 3bitr4i 268 |
. . . . . . 7
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ 〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅})) |
| 13 | | eliniseg 5021 |
. . . . . . 7
⊢ (〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅}) ↔ 〈m,
0c〉 FullFun ↑c ∅) |
| 14 | 1, 6 | brfullfunop 5868 |
. . . . . . 7
⊢ (〈m,
0c〉 FullFun ↑c ∅ ↔ (m
↑c 0c) = ∅) |
| 15 | 12, 13, 14 | 3bitri 262 |
. . . . . 6
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) = ∅) |
| 16 | 15 | necon3bbii 2548 |
. . . . 5
⊢ (¬ m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) ≠ ∅) |
| 17 | 2, 16 | bitri 240 |
. . . 4
⊢ (m ∈ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) ≠ ∅) |
| 18 | 17 | eqabi 2465 |
. . 3
⊢ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) = {m
∣ (m
↑c 0c) ≠ ∅} |
| 19 | | 1stex 4740 |
. . . . . 6
⊢ 1st
∈ V |
| 20 | | 2ndex 5113 |
. . . . . . . 8
⊢ 2nd
∈ V |
| 21 | 20 | cnvex 5103 |
. . . . . . 7
⊢ ◡2nd ∈ V |
| 22 | | snex 4112 |
. . . . . . 7
⊢
{0c} ∈
V |
| 23 | 21, 22 | imaex 4748 |
. . . . . 6
⊢ (◡2nd “
{0c}) ∈ V |
| 24 | 19, 23 | resex 5118 |
. . . . 5
⊢ (1st
↾ (◡2nd “
{0c})) ∈ V |
| 25 | | ceex 6175 |
. . . . . . . 8
⊢
↑c ∈
V |
| 26 | 25 | fullfunex 5861 |
. . . . . . 7
⊢ FullFun ↑c ∈ V |
| 27 | 26 | cnvex 5103 |
. . . . . 6
⊢ ◡ FullFun
↑c ∈
V |
| 28 | | snex 4112 |
. . . . . 6
⊢ {∅} ∈
V |
| 29 | 27, 28 | imaex 4748 |
. . . . 5
⊢ (◡ FullFun
↑c “ {∅}) ∈ V |
| 30 | 24, 29 | imaex 4748 |
. . . 4
⊢ ((1st
↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ∈
V |
| 31 | 30 | complex 4105 |
. . 3
⊢ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ∈
V |
| 32 | 18, 31 | eqeltrri 2424 |
. 2
⊢ {m ∣ (m ↑c 0c)
≠ ∅} ∈
V |
| 33 | | oveq1 5531 |
. . 3
⊢ (m = 0c → (m ↑c 0c) =
(0c ↑c
0c)) |
| 34 | 33 | neeq1d 2530 |
. 2
⊢ (m = 0c → ((m ↑c 0c)
≠ ∅ ↔ (0c
↑c 0c) ≠ ∅)) |
| 35 | | oveq1 5531 |
. . 3
⊢ (m = n →
(m ↑c
0c) = (n
↑c 0c)) |
| 36 | 35 | neeq1d 2530 |
. 2
⊢ (m = n →
((m ↑c
0c) ≠ ∅ ↔
(n ↑c
0c) ≠ ∅)) |
| 37 | | oveq1 5531 |
. . 3
⊢ (m = (n
+c 1c) → (m ↑c 0c) =
((n +c
1c) ↑c
0c)) |
| 38 | 37 | neeq1d 2530 |
. 2
⊢ (m = (n
+c 1c) → ((m ↑c 0c)
≠ ∅ ↔ ((n +c 1c)
↑c 0c) ≠ ∅)) |
| 39 | | oveq1 5531 |
. . 3
⊢ (m = N →
(m ↑c
0c) = (N
↑c 0c)) |
| 40 | 39 | neeq1d 2530 |
. 2
⊢ (m = N →
((m ↑c
0c) ≠ ∅ ↔
(N ↑c
0c) ≠ ∅)) |
| 41 | | 0cnc 6139 |
. . 3
⊢
0c ∈ NC |
| 42 | | pw10 4162 |
. . . 4
⊢ ℘1∅
= ∅ |
| 43 | | nulel0c 4423 |
. . . 4
⊢ ∅ ∈
0c |
| 44 | 42, 43 | eqeltri 2423 |
. . 3
⊢ ℘1∅
∈ 0c |
| 45 | | ce0nnuli 6179 |
. . 3
⊢
((0c ∈ NC ∧ ℘1∅
∈ 0c) →
(0c ↑c 0c) ≠
∅) |
| 46 | 41, 44, 45 | mp2an 653 |
. 2
⊢
(0c ↑c 0c)
≠ ∅ |
| 47 | | nnnc 6147 |
. . 3
⊢ (n ∈ Nn → n ∈ NC
) |
| 48 | | 1cnc 6140 |
. . . . . 6
⊢
1c ∈ NC |
| 49 | | 0ex 4111 |
. . . . . . . 8
⊢ ∅ ∈
V |
| 50 | 49 | pw1sn 4166 |
. . . . . . 7
⊢ ℘1{∅} = {{∅}} |
| 51 | 28 | snel1c 4141 |
. . . . . . 7
⊢ {{∅}} ∈
1c |
| 52 | 50, 51 | eqeltri 2423 |
. . . . . 6
⊢ ℘1{∅} ∈
1c |
| 53 | | ce0nnuli 6179 |
. . . . . 6
⊢
((1c ∈ NC ∧ ℘1{∅} ∈
1c) → (1c ↑c
0c) ≠ ∅) |
| 54 | 48, 52, 53 | mp2an 653 |
. . . . 5
⊢
(1c ↑c 0c)
≠ ∅ |
| 55 | 54 | jctr 526 |
. . . 4
⊢ ((n ↑c 0c)
≠ ∅ → ((n ↑c 0c)
≠ ∅ ∧
(1c ↑c 0c) ≠
∅)) |
| 56 | | ce0addcnnul 6180 |
. . . . 5
⊢ ((n ∈ NC ∧
1c ∈ NC ) → (((n
+c 1c) ↑c
0c) ≠ ∅ ↔
((n ↑c
0c) ≠ ∅ ∧ (1c ↑c
0c) ≠ ∅))) |
| 57 | 48, 56 | mpan2 652 |
. . . 4
⊢ (n ∈ NC → (((n
+c 1c) ↑c
0c) ≠ ∅ ↔
((n ↑c
0c) ≠ ∅ ∧ (1c ↑c
0c) ≠ ∅))) |
| 58 | 55, 57 | syl5ibr 212 |
. . 3
⊢ (n ∈ NC → ((n
↑c 0c) ≠ ∅ → ((n
+c 1c) ↑c
0c) ≠ ∅)) |
| 59 | 47, 58 | syl 15 |
. 2
⊢ (n ∈ Nn → ((n
↑c 0c) ≠ ∅ → ((n
+c 1c) ↑c
0c) ≠ ∅)) |
| 60 | 32, 34, 36, 38, 40, 46, 59 | finds 4412 |
1
⊢ (N ∈ Nn → (N
↑c 0c) ≠ ∅) |