| Step | Hyp | Ref
 | Expression | 
| 1 |   | vex 2863 | 
. . . . . 6
⊢ m ∈
V | 
| 2 | 1 | elcompl 3226 | 
. . . . 5
⊢ (m ∈ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ ¬ m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅}))) | 
| 3 |   | brres 4950 | 
. . . . . . . . . 10
⊢ (t(1st ↾ (◡2nd “
{0c}))m ↔ (t1st m ∧ t ∈ (◡2nd “
{0c}))) | 
| 4 |   | eliniseg 5021 | 
. . . . . . . . . . 11
⊢ (t ∈ (◡2nd “
{0c}) ↔ t2nd
0c) | 
| 5 | 4 | anbi2i 675 | 
. . . . . . . . . 10
⊢ ((t1st m ∧ t ∈ (◡2nd “
{0c})) ↔ (t1st m ∧ t2nd
0c)) | 
| 6 |   | 0cex 4393 | 
. . . . . . . . . . 11
⊢
0c ∈
V | 
| 7 | 1, 6 | op1st2nd 5791 | 
. . . . . . . . . 10
⊢ ((t1st m ∧ t2nd 0c) ↔
t = 〈m,
0c〉) | 
| 8 | 3, 5, 7 | 3bitri 262 | 
. . . . . . . . 9
⊢ (t(1st ↾ (◡2nd “
{0c}))m ↔ t = 〈m, 0c〉) | 
| 9 | 8 | rexbii 2640 | 
. . . . . . . 8
⊢ (∃t ∈ (◡ FullFun ↑c “ {∅})t(1st ↾ (◡2nd “
{0c}))m ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t = 〈m,
0c〉) | 
| 10 |   | elima 4755 | 
. . . . . . . 8
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t(1st ↾ (◡2nd “
{0c}))m) | 
| 11 |   | risset 2662 | 
. . . . . . . 8
⊢ (〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅}) ↔ ∃t ∈ (◡ FullFun ↑c “ {∅})t = 〈m,
0c〉) | 
| 12 | 9, 10, 11 | 3bitr4i 268 | 
. . . . . . 7
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ 〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅})) | 
| 13 |   | eliniseg 5021 | 
. . . . . . 7
⊢ (〈m,
0c〉 ∈ (◡ FullFun ↑c “ {∅}) ↔ 〈m,
0c〉 FullFun ↑c ∅) | 
| 14 | 1, 6 | brfullfunop 5868 | 
. . . . . . 7
⊢ (〈m,
0c〉 FullFun ↑c ∅ ↔ (m
↑c 0c) = ∅) | 
| 15 | 12, 13, 14 | 3bitri 262 | 
. . . . . 6
⊢ (m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) = ∅) | 
| 16 | 15 | necon3bbii 2548 | 
. . . . 5
⊢ (¬ m ∈
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) ≠ ∅) | 
| 17 | 2, 16 | bitri 240 | 
. . . 4
⊢ (m ∈ ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ↔ (m
↑c 0c) ≠ ∅) | 
| 18 | 17 | eqabi 2465 | 
. . 3
⊢  ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) = {m
∣ (m
↑c 0c) ≠ ∅} | 
| 19 |   | 1stex 4740 | 
. . . . . 6
⊢ 1st
∈ V | 
| 20 |   | 2ndex 5113 | 
. . . . . . . 8
⊢ 2nd
∈ V | 
| 21 | 20 | cnvex 5103 | 
. . . . . . 7
⊢ ◡2nd ∈ V | 
| 22 |   | snex 4112 | 
. . . . . . 7
⊢
{0c} ∈
V | 
| 23 | 21, 22 | imaex 4748 | 
. . . . . 6
⊢ (◡2nd “
{0c}) ∈ V | 
| 24 | 19, 23 | resex 5118 | 
. . . . 5
⊢ (1st
↾ (◡2nd “
{0c})) ∈ V | 
| 25 |   | ceex 6175 | 
. . . . . . . 8
⊢ 
↑c ∈
V | 
| 26 | 25 | fullfunex 5861 | 
. . . . . . 7
⊢  FullFun ↑c ∈ V | 
| 27 | 26 | cnvex 5103 | 
. . . . . 6
⊢ ◡ FullFun
↑c ∈
V | 
| 28 |   | snex 4112 | 
. . . . . 6
⊢ {∅} ∈
V | 
| 29 | 27, 28 | imaex 4748 | 
. . . . 5
⊢ (◡ FullFun
↑c “ {∅}) ∈ V | 
| 30 | 24, 29 | imaex 4748 | 
. . . 4
⊢ ((1st
↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ∈
V | 
| 31 | 30 | complex 4105 | 
. . 3
⊢  ∼
((1st ↾ (◡2nd “
{0c})) “ (◡
FullFun ↑c “ {∅})) ∈
V | 
| 32 | 18, 31 | eqeltrri 2424 | 
. 2
⊢ {m ∣ (m ↑c 0c)
≠ ∅} ∈
V | 
| 33 |   | oveq1 5531 | 
. . 3
⊢ (m = 0c → (m ↑c 0c) =
(0c ↑c
0c)) | 
| 34 | 33 | neeq1d 2530 | 
. 2
⊢ (m = 0c → ((m ↑c 0c)
≠ ∅ ↔ (0c
↑c 0c) ≠ ∅)) | 
| 35 |   | oveq1 5531 | 
. . 3
⊢ (m = n →
(m ↑c
0c) = (n
↑c 0c)) | 
| 36 | 35 | neeq1d 2530 | 
. 2
⊢ (m = n →
((m ↑c
0c) ≠ ∅ ↔
(n ↑c
0c) ≠ ∅)) | 
| 37 |   | oveq1 5531 | 
. . 3
⊢ (m = (n
+c 1c) → (m ↑c 0c) =
((n +c
1c) ↑c
0c)) | 
| 38 | 37 | neeq1d 2530 | 
. 2
⊢ (m = (n
+c 1c) → ((m ↑c 0c)
≠ ∅ ↔ ((n +c 1c)
↑c 0c) ≠ ∅)) | 
| 39 |   | oveq1 5531 | 
. . 3
⊢ (m = N →
(m ↑c
0c) = (N
↑c 0c)) | 
| 40 | 39 | neeq1d 2530 | 
. 2
⊢ (m = N →
((m ↑c
0c) ≠ ∅ ↔
(N ↑c
0c) ≠ ∅)) | 
| 41 |   | 0cnc 6139 | 
. . 3
⊢
0c ∈ NC | 
| 42 |   | pw10 4162 | 
. . . 4
⊢ ℘1∅
= ∅ | 
| 43 |   | nulel0c 4423 | 
. . . 4
⊢ ∅ ∈
0c | 
| 44 | 42, 43 | eqeltri 2423 | 
. . 3
⊢ ℘1∅
∈ 0c | 
| 45 |   | ce0nnuli 6179 | 
. . 3
⊢
((0c ∈ NC ∧ ℘1∅
∈ 0c) →
(0c ↑c 0c) ≠
∅) | 
| 46 | 41, 44, 45 | mp2an 653 | 
. 2
⊢
(0c ↑c 0c)
≠ ∅ | 
| 47 |   | nnnc 6147 | 
. . 3
⊢ (n ∈ Nn → n ∈ NC
) | 
| 48 |   | 1cnc 6140 | 
. . . . . 6
⊢
1c ∈ NC | 
| 49 |   | 0ex 4111 | 
. . . . . . . 8
⊢ ∅ ∈
V | 
| 50 | 49 | pw1sn 4166 | 
. . . . . . 7
⊢ ℘1{∅} = {{∅}} | 
| 51 | 28 | snel1c 4141 | 
. . . . . . 7
⊢ {{∅}} ∈
1c | 
| 52 | 50, 51 | eqeltri 2423 | 
. . . . . 6
⊢ ℘1{∅} ∈
1c | 
| 53 |   | ce0nnuli 6179 | 
. . . . . 6
⊢
((1c ∈ NC ∧ ℘1{∅} ∈
1c) → (1c ↑c
0c) ≠ ∅) | 
| 54 | 48, 52, 53 | mp2an 653 | 
. . . . 5
⊢
(1c ↑c 0c)
≠ ∅ | 
| 55 | 54 | jctr 526 | 
. . . 4
⊢ ((n ↑c 0c)
≠ ∅ → ((n ↑c 0c)
≠ ∅ ∧
(1c ↑c 0c) ≠
∅)) | 
| 56 |   | ce0addcnnul 6180 | 
. . . . 5
⊢ ((n ∈ NC ∧
1c ∈ NC ) → (((n
+c 1c) ↑c
0c) ≠ ∅ ↔
((n ↑c
0c) ≠ ∅ ∧ (1c ↑c
0c) ≠ ∅))) | 
| 57 | 48, 56 | mpan2 652 | 
. . . 4
⊢ (n ∈ NC → (((n
+c 1c) ↑c
0c) ≠ ∅ ↔
((n ↑c
0c) ≠ ∅ ∧ (1c ↑c
0c) ≠ ∅))) | 
| 58 | 55, 57 | syl5ibr 212 | 
. . 3
⊢ (n ∈ NC → ((n
↑c 0c) ≠ ∅ → ((n
+c 1c) ↑c
0c) ≠ ∅)) | 
| 59 | 47, 58 | syl 15 | 
. 2
⊢ (n ∈ Nn → ((n
↑c 0c) ≠ ∅ → ((n
+c 1c) ↑c
0c) ≠ ∅)) | 
| 60 | 32, 34, 36, 38, 40, 46, 59 | finds 4412 | 
1
⊢ (N ∈ Nn → (N
↑c 0c) ≠ ∅) |