NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ce0nn GIF version

Theorem ce0nn 6181
Description: A natural raised to cardinal zero is nonempty. Theorem XI.2.44 of [Rosser] p. 383. (Contributed by SF, 9-Mar-2015.)
Assertion
Ref Expression
ce0nn (N Nn → (Nc 0c) ≠ )

Proof of Theorem ce0nn
Dummy variables t m n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . . 6 m V
21elcompl 3226 . . . . 5 (m ∼ ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ ¬ m ((1st (2nd “ {0c})) “ ( FullFunc “ {})))
3 brres 4950 . . . . . . . . . 10 (t(1st (2nd “ {0c}))m ↔ (t1st m t (2nd “ {0c})))
4 eliniseg 5021 . . . . . . . . . . 11 (t (2nd “ {0c}) ↔ t2nd 0c)
54anbi2i 675 . . . . . . . . . 10 ((t1st m t (2nd “ {0c})) ↔ (t1st m t2nd 0c))
6 0cex 4393 . . . . . . . . . . 11 0c V
71, 6op1st2nd 5791 . . . . . . . . . 10 ((t1st m t2nd 0c) ↔ t = m, 0c)
83, 5, 73bitri 262 . . . . . . . . 9 (t(1st (2nd “ {0c}))mt = m, 0c)
98rexbii 2640 . . . . . . . 8 (t ( FullFunc “ {})t(1st (2nd “ {0c}))mt ( FullFunc “ {})t = m, 0c)
10 elima 4755 . . . . . . . 8 (m ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ t ( FullFunc “ {})t(1st (2nd “ {0c}))m)
11 risset 2662 . . . . . . . 8 (m, 0c ( FullFunc “ {}) ↔ t ( FullFunc “ {})t = m, 0c)
129, 10, 113bitr4i 268 . . . . . . 7 (m ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ m, 0c ( FullFunc “ {}))
13 eliniseg 5021 . . . . . . 7 (m, 0c ( FullFunc “ {}) ↔ m, 0c FullFunc )
141, 6brfullfunop 5868 . . . . . . 7 (m, 0c FullFunc ↔ (mc 0c) = )
1512, 13, 143bitri 262 . . . . . 6 (m ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ (mc 0c) = )
1615necon3bbii 2548 . . . . 5 m ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ (mc 0c) ≠ )
172, 16bitri 240 . . . 4 (m ∼ ((1st (2nd “ {0c})) “ ( FullFunc “ {})) ↔ (mc 0c) ≠ )
1817abbi2i 2465 . . 3 ∼ ((1st (2nd “ {0c})) “ ( FullFunc “ {})) = {m (mc 0c) ≠ }
19 1stex 4740 . . . . . 6 1st V
20 2ndex 5113 . . . . . . . 8 2nd V
2120cnvex 5103 . . . . . . 7 2nd V
22 snex 4112 . . . . . . 7 {0c} V
2321, 22imaex 4748 . . . . . 6 (2nd “ {0c}) V
2419, 23resex 5118 . . . . 5 (1st (2nd “ {0c})) V
25 ceex 6175 . . . . . . . 8 c V
2625fullfunex 5861 . . . . . . 7 FullFunc V
2726cnvex 5103 . . . . . 6 FullFunc V
28 snex 4112 . . . . . 6 {} V
2927, 28imaex 4748 . . . . 5 ( FullFunc “ {}) V
3024, 29imaex 4748 . . . 4 ((1st (2nd “ {0c})) “ ( FullFunc “ {})) V
3130complex 4105 . . 3 ∼ ((1st (2nd “ {0c})) “ ( FullFunc “ {})) V
3218, 31eqeltrri 2424 . 2 {m (mc 0c) ≠ } V
33 oveq1 5531 . . 3 (m = 0c → (mc 0c) = (0cc 0c))
3433neeq1d 2530 . 2 (m = 0c → ((mc 0c) ≠ ↔ (0cc 0c) ≠ ))
35 oveq1 5531 . . 3 (m = n → (mc 0c) = (nc 0c))
3635neeq1d 2530 . 2 (m = n → ((mc 0c) ≠ ↔ (nc 0c) ≠ ))
37 oveq1 5531 . . 3 (m = (n +c 1c) → (mc 0c) = ((n +c 1c) ↑c 0c))
3837neeq1d 2530 . 2 (m = (n +c 1c) → ((mc 0c) ≠ ↔ ((n +c 1c) ↑c 0c) ≠ ))
39 oveq1 5531 . . 3 (m = N → (mc 0c) = (Nc 0c))
4039neeq1d 2530 . 2 (m = N → ((mc 0c) ≠ ↔ (Nc 0c) ≠ ))
41 0cnc 6139 . . 3 0c NC
42 pw10 4162 . . . 4 1 =
43 nulel0c 4423 . . . 4 0c
4442, 43eqeltri 2423 . . 3 1 0c
45 ce0nnuli 6179 . . 3 ((0c NC 1 0c) → (0cc 0c) ≠ )
4641, 44, 45mp2an 653 . 2 (0cc 0c) ≠
47 nnnc 6147 . . 3 (n Nnn NC )
48 1cnc 6140 . . . . . 6 1c NC
49 0ex 4111 . . . . . . . 8 V
5049pw1sn 4166 . . . . . . 7 1{} = {{}}
5128snel1c 4141 . . . . . . 7 {{}} 1c
5250, 51eqeltri 2423 . . . . . 6 1{} 1c
53 ce0nnuli 6179 . . . . . 6 ((1c NC 1{} 1c) → (1cc 0c) ≠ )
5448, 52, 53mp2an 653 . . . . 5 (1cc 0c) ≠
5554jctr 526 . . . 4 ((nc 0c) ≠ → ((nc 0c) ≠ (1cc 0c) ≠ ))
56 ce0addcnnul 6180 . . . . 5 ((n NC 1c NC ) → (((n +c 1c) ↑c 0c) ≠ ↔ ((nc 0c) ≠ (1cc 0c) ≠ )))
5748, 56mpan2 652 . . . 4 (n NC → (((n +c 1c) ↑c 0c) ≠ ↔ ((nc 0c) ≠ (1cc 0c) ≠ )))
5855, 57syl5ibr 212 . . 3 (n NC → ((nc 0c) ≠ → ((n +c 1c) ↑c 0c) ≠ ))
5947, 58syl 15 . 2 (n Nn → ((nc 0c) ≠ → ((n +c 1c) ↑c 0c) ≠ ))
6032, 34, 36, 38, 40, 46, 59finds 4412 1 (N Nn → (Nc 0c) ≠ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  {cab 2339  wne 2517  wrex 2616  Vcvv 2860  ccompl 3206  c0 3551  {csn 3738  1cc1c 4135  1cpw1 4136   Nn cnnc 4374  0cc0c 4375   +c cplc 4376  cop 4562   class class class wbr 4640  1st c1st 4718  cima 4723  ccnv 4772   cres 4775  2nd c2nd 4784  (class class class)co 5526   FullFun cfullfun 5768   NC cncs 6089  c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-ce 6107
This theorem is referenced by:  ceclnn1  6190  nchoicelem5  6294
  Copyright terms: Public domain W3C validator