![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > map0 | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by set.mm contributors, 10-Dec-2003.) (Revised by set.mm contributors, 17-May-2007.) |
Ref | Expression |
---|---|
map0.1 | ⊢ A ∈ V |
map0.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
map0 | ⊢ ((A ↑m B) = ∅ ↔ (A = ∅ ∧ B ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | map0.1 | . . . . . 6 ⊢ A ∈ V | |
2 | map0.2 | . . . . . 6 ⊢ B ∈ V | |
3 | 1, 2 | mapval 6011 | . . . . 5 ⊢ (A ↑m B) = {f ∣ f:B–→A} |
4 | 3 | eqeq1i 2360 | . . . 4 ⊢ ((A ↑m B) = ∅ ↔ {f ∣ f:B–→A} = ∅) |
5 | snssi 3852 | . . . . . . . 8 ⊢ (x ∈ A → {x} ⊆ A) | |
6 | vex 2862 | . . . . . . . . . 10 ⊢ x ∈ V | |
7 | 6 | fconst 5250 | . . . . . . . . 9 ⊢ (B × {x}):B–→{x} |
8 | fss 5230 | . . . . . . . . 9 ⊢ (((B × {x}):B–→{x} ∧ {x} ⊆ A) → (B × {x}):B–→A) | |
9 | 7, 8 | mpan 651 | . . . . . . . 8 ⊢ ({x} ⊆ A → (B × {x}):B–→A) |
10 | snex 4111 | . . . . . . . . . 10 ⊢ {x} ∈ V | |
11 | 2, 10 | xpex 5115 | . . . . . . . . 9 ⊢ (B × {x}) ∈ V |
12 | feq1 5210 | . . . . . . . . 9 ⊢ (f = (B × {x}) → (f:B–→A ↔ (B × {x}):B–→A)) | |
13 | 11, 12 | spcev 2946 | . . . . . . . 8 ⊢ ((B × {x}):B–→A → ∃f f:B–→A) |
14 | 5, 9, 13 | 3syl 18 | . . . . . . 7 ⊢ (x ∈ A → ∃f f:B–→A) |
15 | 14 | exlimiv 1634 | . . . . . 6 ⊢ (∃x x ∈ A → ∃f f:B–→A) |
16 | n0 3559 | . . . . . 6 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
17 | abn0 3568 | . . . . . 6 ⊢ ({f ∣ f:B–→A} ≠ ∅ ↔ ∃f f:B–→A) | |
18 | 15, 16, 17 | 3imtr4i 257 | . . . . 5 ⊢ (A ≠ ∅ → {f ∣ f:B–→A} ≠ ∅) |
19 | 18 | necon4i 2576 | . . . 4 ⊢ ({f ∣ f:B–→A} = ∅ → A = ∅) |
20 | 4, 19 | sylbi 187 | . . 3 ⊢ ((A ↑m B) = ∅ → A = ∅) |
21 | 1 | map0e 6023 | . . . . . 6 ⊢ (A ↑m ∅) = {∅} |
22 | 0ex 4110 | . . . . . . . 8 ⊢ ∅ ∈ V | |
23 | 22 | snid 3760 | . . . . . . 7 ⊢ ∅ ∈ {∅} |
24 | ne0i 3556 | . . . . . . 7 ⊢ (∅ ∈ {∅} → {∅} ≠ ∅) | |
25 | 23, 24 | ax-mp 8 | . . . . . 6 ⊢ {∅} ≠ ∅ |
26 | 21, 25 | eqnetri 2533 | . . . . 5 ⊢ (A ↑m ∅) ≠ ∅ |
27 | oveq2 5531 | . . . . . 6 ⊢ (B = ∅ → (A ↑m B) = (A ↑m ∅)) | |
28 | 27 | neeq1d 2529 | . . . . 5 ⊢ (B = ∅ → ((A ↑m B) ≠ ∅ ↔ (A ↑m ∅) ≠ ∅)) |
29 | 26, 28 | mpbiri 224 | . . . 4 ⊢ (B = ∅ → (A ↑m B) ≠ ∅) |
30 | 29 | necon2i 2563 | . . 3 ⊢ ((A ↑m B) = ∅ → B ≠ ∅) |
31 | 20, 30 | jca 518 | . 2 ⊢ ((A ↑m B) = ∅ → (A = ∅ ∧ B ≠ ∅)) |
32 | oveq1 5530 | . . 3 ⊢ (A = ∅ → (A ↑m B) = (∅ ↑m B)) | |
33 | 2 | map0b 6024 | . . 3 ⊢ (B ≠ ∅ → (∅ ↑m B) = ∅) |
34 | 32, 33 | sylan9eq 2405 | . 2 ⊢ ((A = ∅ ∧ B ≠ ∅) → (A ↑m B) = ∅) |
35 | 31, 34 | impbii 180 | 1 ⊢ ((A ↑m B) = ∅ ↔ (A = ∅ ∧ B ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ≠ wne 2516 Vcvv 2859 ⊆ wss 3257 ∅c0 3550 {csn 3737 × cxp 4770 –→wf 4777 (class class class)co 5525 ↑m cmap 5999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt2 5654 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-map 6001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |