NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  map0 GIF version

Theorem map0 6026
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by set.mm contributors, 10-Dec-2003.) (Revised by set.mm contributors, 17-May-2007.)
Hypotheses
Ref Expression
map0.1 A V
map0.2 B V
Assertion
Ref Expression
map0 ((Am B) = ↔ (A = B))

Proof of Theorem map0
Dummy variables x f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 map0.1 . . . . . 6 A V
2 map0.2 . . . . . 6 B V
31, 2mapval 6012 . . . . 5 (Am B) = {f f:B–→A}
43eqeq1i 2360 . . . 4 ((Am B) = ↔ {f f:B–→A} = )
5 snssi 3853 . . . . . . . 8 (x A → {x} A)
6 vex 2863 . . . . . . . . . 10 x V
76fconst 5251 . . . . . . . . 9 (B × {x}):B–→{x}
8 fss 5231 . . . . . . . . 9 (((B × {x}):B–→{x} {x} A) → (B × {x}):B–→A)
97, 8mpan 651 . . . . . . . 8 ({x} A → (B × {x}):B–→A)
10 snex 4112 . . . . . . . . . 10 {x} V
112, 10xpex 5116 . . . . . . . . 9 (B × {x}) V
12 feq1 5211 . . . . . . . . 9 (f = (B × {x}) → (f:B–→A ↔ (B × {x}):B–→A))
1311, 12spcev 2947 . . . . . . . 8 ((B × {x}):B–→Af f:B–→A)
145, 9, 133syl 18 . . . . . . 7 (x Af f:B–→A)
1514exlimiv 1634 . . . . . 6 (x x Af f:B–→A)
16 n0 3560 . . . . . 6 (Ax x A)
17 abn0 3569 . . . . . 6 ({f f:B–→A} ≠ f f:B–→A)
1815, 16, 173imtr4i 257 . . . . 5 (A → {f f:B–→A} ≠ )
1918necon4i 2577 . . . 4 ({f f:B–→A} = A = )
204, 19sylbi 187 . . 3 ((Am B) = A = )
211map0e 6024 . . . . . 6 (Am ) = {}
22 0ex 4111 . . . . . . . 8 V
2322snid 3761 . . . . . . 7 {}
24 ne0i 3557 . . . . . . 7 ( {} → {} ≠ )
2523, 24ax-mp 5 . . . . . 6 {} ≠
2621, 25eqnetri 2534 . . . . 5 (Am ) ≠
27 oveq2 5532 . . . . . 6 (B = → (Am B) = (Am ))
2827neeq1d 2530 . . . . 5 (B = → ((Am B) ≠ ↔ (Am ) ≠ ))
2926, 28mpbiri 224 . . . 4 (B = → (Am B) ≠ )
3029necon2i 2564 . . 3 ((Am B) = B)
3120, 30jca 518 . 2 ((Am B) = → (A = B))
32 oveq1 5531 . . 3 (A = → (Am B) = (m B))
332map0b 6025 . . 3 (B → (m B) = )
3432, 33sylan9eq 2405 . 2 ((A = B) → (Am B) = )
3531, 34impbii 180 1 ((Am B) = ↔ (A = B))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wne 2517  Vcvv 2860   wss 3258  c0 3551  {csn 3738   × cxp 4771  –→wf 4778  (class class class)co 5526  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator