New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > map0 | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by set.mm contributors, 10-Dec-2003.) (Revised by set.mm contributors, 17-May-2007.) |
Ref | Expression |
---|---|
map0.1 | ⊢ A ∈ V |
map0.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
map0 | ⊢ ((A ↑m B) = ∅ ↔ (A = ∅ ∧ B ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | map0.1 | . . . . . 6 ⊢ A ∈ V | |
2 | map0.2 | . . . . . 6 ⊢ B ∈ V | |
3 | 1, 2 | mapval 6012 | . . . . 5 ⊢ (A ↑m B) = {f ∣ f:B–→A} |
4 | 3 | eqeq1i 2360 | . . . 4 ⊢ ((A ↑m B) = ∅ ↔ {f ∣ f:B–→A} = ∅) |
5 | snssi 3853 | . . . . . . . 8 ⊢ (x ∈ A → {x} ⊆ A) | |
6 | vex 2863 | . . . . . . . . . 10 ⊢ x ∈ V | |
7 | 6 | fconst 5251 | . . . . . . . . 9 ⊢ (B × {x}):B–→{x} |
8 | fss 5231 | . . . . . . . . 9 ⊢ (((B × {x}):B–→{x} ∧ {x} ⊆ A) → (B × {x}):B–→A) | |
9 | 7, 8 | mpan 651 | . . . . . . . 8 ⊢ ({x} ⊆ A → (B × {x}):B–→A) |
10 | snex 4112 | . . . . . . . . . 10 ⊢ {x} ∈ V | |
11 | 2, 10 | xpex 5116 | . . . . . . . . 9 ⊢ (B × {x}) ∈ V |
12 | feq1 5211 | . . . . . . . . 9 ⊢ (f = (B × {x}) → (f:B–→A ↔ (B × {x}):B–→A)) | |
13 | 11, 12 | spcev 2947 | . . . . . . . 8 ⊢ ((B × {x}):B–→A → ∃f f:B–→A) |
14 | 5, 9, 13 | 3syl 18 | . . . . . . 7 ⊢ (x ∈ A → ∃f f:B–→A) |
15 | 14 | exlimiv 1634 | . . . . . 6 ⊢ (∃x x ∈ A → ∃f f:B–→A) |
16 | n0 3560 | . . . . . 6 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
17 | abn0 3569 | . . . . . 6 ⊢ ({f ∣ f:B–→A} ≠ ∅ ↔ ∃f f:B–→A) | |
18 | 15, 16, 17 | 3imtr4i 257 | . . . . 5 ⊢ (A ≠ ∅ → {f ∣ f:B–→A} ≠ ∅) |
19 | 18 | necon4i 2577 | . . . 4 ⊢ ({f ∣ f:B–→A} = ∅ → A = ∅) |
20 | 4, 19 | sylbi 187 | . . 3 ⊢ ((A ↑m B) = ∅ → A = ∅) |
21 | 1 | map0e 6024 | . . . . . 6 ⊢ (A ↑m ∅) = {∅} |
22 | 0ex 4111 | . . . . . . . 8 ⊢ ∅ ∈ V | |
23 | 22 | snid 3761 | . . . . . . 7 ⊢ ∅ ∈ {∅} |
24 | ne0i 3557 | . . . . . . 7 ⊢ (∅ ∈ {∅} → {∅} ≠ ∅) | |
25 | 23, 24 | ax-mp 5 | . . . . . 6 ⊢ {∅} ≠ ∅ |
26 | 21, 25 | eqnetri 2534 | . . . . 5 ⊢ (A ↑m ∅) ≠ ∅ |
27 | oveq2 5532 | . . . . . 6 ⊢ (B = ∅ → (A ↑m B) = (A ↑m ∅)) | |
28 | 27 | neeq1d 2530 | . . . . 5 ⊢ (B = ∅ → ((A ↑m B) ≠ ∅ ↔ (A ↑m ∅) ≠ ∅)) |
29 | 26, 28 | mpbiri 224 | . . . 4 ⊢ (B = ∅ → (A ↑m B) ≠ ∅) |
30 | 29 | necon2i 2564 | . . 3 ⊢ ((A ↑m B) = ∅ → B ≠ ∅) |
31 | 20, 30 | jca 518 | . 2 ⊢ ((A ↑m B) = ∅ → (A = ∅ ∧ B ≠ ∅)) |
32 | oveq1 5531 | . . 3 ⊢ (A = ∅ → (A ↑m B) = (∅ ↑m B)) | |
33 | 2 | map0b 6025 | . . 3 ⊢ (B ≠ ∅ → (∅ ↑m B) = ∅) |
34 | 32, 33 | sylan9eq 2405 | . 2 ⊢ ((A = ∅ ∧ B ≠ ∅) → (A ↑m B) = ∅) |
35 | 31, 34 | impbii 180 | 1 ⊢ ((A ↑m B) = ∅ ↔ (A = ∅ ∧ B ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ≠ wne 2517 Vcvv 2860 ⊆ wss 3258 ∅c0 3551 {csn 3738 × cxp 4771 –→wf 4778 (class class class)co 5526 ↑m cmap 6000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-map 6002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |