| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfpr2 | GIF version | ||
| Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| dfpr2 | ⊢ {A, B} = {x ∣ (x = A ∨ x = B)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr 3743 | . 2 ⊢ {A, B} = ({A} ∪ {B}) | |
| 2 | elun 3221 | . . . 4 ⊢ (x ∈ ({A} ∪ {B}) ↔ (x ∈ {A} ∨ x ∈ {B})) | |
| 3 | elsn 3749 | . . . . 5 ⊢ (x ∈ {A} ↔ x = A) | |
| 4 | elsn 3749 | . . . . 5 ⊢ (x ∈ {B} ↔ x = B) | |
| 5 | 3, 4 | orbi12i 507 | . . . 4 ⊢ ((x ∈ {A} ∨ x ∈ {B}) ↔ (x = A ∨ x = B)) | 
| 6 | 2, 5 | bitri 240 | . . 3 ⊢ (x ∈ ({A} ∪ {B}) ↔ (x = A ∨ x = B)) | 
| 7 | 6 | eqabi 2465 | . 2 ⊢ ({A} ∪ {B}) = {x ∣ (x = A ∨ x = B)} | 
| 8 | 1, 7 | eqtri 2373 | 1 ⊢ {A, B} = {x ∣ (x = A ∨ x = B)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∨ wo 357 = wceq 1642 ∈ wcel 1710 {cab 2339 ∪ cun 3208 {csn 3738 {cpr 3739 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: elprg 3751 nfpr 3774 pwpw0 3856 pwsn 3882 pwsnALT 3883 | 
| Copyright terms: Public domain | W3C validator |