NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nrexdv GIF version

Theorem nrexdv 2718
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrexdv.1 ((φ x A) → ¬ ψ)
Assertion
Ref Expression
nrexdv (φ → ¬ x A ψ)
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem nrexdv
StepHypRef Expression
1 nrexdv.1 . . 3 ((φ x A) → ¬ ψ)
21ralrimiva 2698 . 2 (φx A ¬ ψ)
3 ralnex 2625 . 2 (x A ¬ ψ ↔ ¬ x A ψ)
42, 3sylib 188 1 (φ → ¬ x A ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   wcel 1710  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620  df-rex 2621
This theorem is referenced by:  nndisjeq  4430  ltfinirr  4458  nnadjoin  4521  tfinnn  4535  vfinncvntsp  4550
  Copyright terms: Public domain W3C validator