New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nrexdv | GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((φ ∧ x ∈ A) → ¬ ψ) |
Ref | Expression |
---|---|
nrexdv | ⊢ (φ → ¬ ∃x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → ¬ ψ) | |
2 | 1 | ralrimiva 2697 | . 2 ⊢ (φ → ∀x ∈ A ¬ ψ) |
3 | ralnex 2624 | . 2 ⊢ (∀x ∈ A ¬ ψ ↔ ¬ ∃x ∈ A ψ) | |
4 | 2, 3 | sylib 188 | 1 ⊢ (φ → ¬ ∃x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2614 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2619 df-rex 2620 |
This theorem is referenced by: nndisjeq 4429 ltfinirr 4457 nnadjoin 4520 tfinnn 4534 vfinncvntsp 4549 |
Copyright terms: Public domain | W3C validator |