| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > preqr2g | GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| preqr2g | ⊢ ((A ∈ V ∧ B ∈ W) → ({C, A} = {C, B} → A = B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3801 | . . . 4 ⊢ (x = A → {C, x} = {C, A}) | |
| 2 | 1 | eqeq1d 2361 | . . 3 ⊢ (x = A → ({C, x} = {C, y} ↔ {C, A} = {C, y})) |
| 3 | eqeq1 2359 | . . 3 ⊢ (x = A → (x = y ↔ A = y)) | |
| 4 | 2, 3 | imbi12d 311 | . 2 ⊢ (x = A → (({C, x} = {C, y} → x = y) ↔ ({C, A} = {C, y} → A = y))) |
| 5 | preq2 3801 | . . . 4 ⊢ (y = B → {C, y} = {C, B}) | |
| 6 | 5 | eqeq2d 2364 | . . 3 ⊢ (y = B → ({C, A} = {C, y} ↔ {C, A} = {C, B})) |
| 7 | eqeq2 2362 | . . 3 ⊢ (y = B → (A = y ↔ A = B)) | |
| 8 | 6, 7 | imbi12d 311 | . 2 ⊢ (y = B → (({C, A} = {C, y} → A = y) ↔ ({C, A} = {C, B} → A = B))) |
| 9 | vex 2863 | . . 3 ⊢ x ∈ V | |
| 10 | vex 2863 | . . 3 ⊢ y ∈ V | |
| 11 | 9, 10 | preqr2 4126 | . 2 ⊢ ({C, x} = {C, y} → x = y) |
| 12 | 4, 8, 11 | vtocl2g 2919 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → ({C, A} = {C, B} → A = B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cpr 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
| This theorem is referenced by: opkthg 4132 |
| Copyright terms: Public domain | W3C validator |