New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (A = B → (C = A ↔ C = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . 2 ⊢ (A = B → (A = C ↔ B = C)) | |
2 | eqcom 2355 | . 2 ⊢ (C = A ↔ A = C) | |
3 | eqcom 2355 | . 2 ⊢ (C = B ↔ B = C) | |
4 | 1, 2, 3 | 3bitr4g 279 | 1 ⊢ (A = B → (C = A ↔ C = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqeq2i 2363 eqeq2d 2364 eqeq12 2365 eleq1 2413 neeq2 2526 alexeq 2969 ceqex 2970 pm13.183 2980 eqeu 3008 moeq3 3014 mo2icl 3016 mob2 3017 euind 3024 reu6i 3028 reuind 3040 sbc2or 3055 sbc5 3071 csbiebg 3176 eqif 3696 sneq 3745 preqr1 4125 preqr2g 4127 preq12bg 4129 opkelidkg 4275 iota5 4360 nndisjeq 4430 lefinlteq 4464 ltfintri 4467 evenodddisjlem1 4516 ideqg 4869 ideqg2 4870 fneq2 5175 foeq3 5268 fvelimab 5371 fvopab4t 5386 dff13f 5473 f1fveq 5474 opbr1st 5502 opbr2nd 5503 funsi 5521 ov3 5600 caovcan 5629 mpt2eq123 5662 ovmpt4g 5711 fnpprod 5844 fnfullfunlem1 5857 extd 5924 antid 5930 qsdisj 5996 ncspw1eu 6160 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |