NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 4161
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (The proof was shortened by Andrew Salmon, 29-Jun-2011.) (Contributed by SF, 5-Aug-1993.) (Revised by SF, 29-Jun-2011.)
Assertion
Ref Expression
pw0 = {}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3581 . . 3 (x x = )
21abbii 2466 . 2 {x x } = {x x = }
3 df-pw 3725 . 2 = {x x }
4 df-sn 3742 . 2 {} = {x x = }
52, 3, 43eqtr4i 2383 1 = {}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  {cab 2339   wss 3258  c0 3551  cpw 3723  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742
This theorem is referenced by:  pw10  4162  nnpweq  4524  sfin01  4529
  Copyright terms: Public domain W3C validator