New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0nel1c | GIF version |
Description: The empty class is not a singleton. (Contributed by SF, 22-Jan-2015.) |
Ref | Expression |
---|---|
0nel1c | ⊢ ¬ ∅ ∈ 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . 4 ⊢ x ∈ V | |
2 | snprc 3789 | . . . . . 6 ⊢ (¬ x ∈ V ↔ {x} = ∅) | |
3 | eqcom 2355 | . . . . . 6 ⊢ ({x} = ∅ ↔ ∅ = {x}) | |
4 | 2, 3 | bitri 240 | . . . . 5 ⊢ (¬ x ∈ V ↔ ∅ = {x}) |
5 | 4 | con1bii 321 | . . . 4 ⊢ (¬ ∅ = {x} ↔ x ∈ V) |
6 | 1, 5 | mpbir 200 | . . 3 ⊢ ¬ ∅ = {x} |
7 | 6 | nex 1555 | . 2 ⊢ ¬ ∃x∅ = {x} |
8 | el1c 4140 | . 2 ⊢ (∅ ∈ 1c ↔ ∃x∅ = {x}) | |
9 | 7, 8 | mtbir 290 | 1 ⊢ ¬ ∅ ∈ 1c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∅c0 3551 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 |
This theorem is referenced by: pw10 4162 vfin1cltv 4548 |
Copyright terms: Public domain | W3C validator |