New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opelopabaf | GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4709 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
opelopabaf.x | ⊢ Ⅎxψ |
opelopabaf.y | ⊢ Ⅎyψ |
opelopabaf.1 | ⊢ A ∈ V |
opelopabaf.2 | ⊢ B ∈ V |
opelopabaf.3 | ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
opelopabaf | ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 4698 | . 2 ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ [̣A / x]̣[̣B / y]̣φ) | |
2 | opelopabaf.1 | . . 3 ⊢ A ∈ V | |
3 | opelopabaf.2 | . . 3 ⊢ B ∈ V | |
4 | opelopabaf.x | . . . 4 ⊢ Ⅎxψ | |
5 | opelopabaf.y | . . . 4 ⊢ Ⅎyψ | |
6 | nfv 1619 | . . . 4 ⊢ Ⅎx B ∈ V | |
7 | opelopabaf.3 | . . . 4 ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) | |
8 | 4, 5, 6, 7 | sbc2iegf 3113 | . . 3 ⊢ ((A ∈ V ∧ B ∈ V) → ([̣A / x]̣[̣B / y]̣φ ↔ ψ)) |
9 | 2, 3, 8 | mp2an 653 | . 2 ⊢ ([̣A / x]̣[̣B / y]̣φ ↔ ψ) |
10 | 1, 9 | bitri 240 | 1 ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |