New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcss | GIF version |
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcss | ⊢ (A ∈ B → ([̣A / x]̣C ⊆ D ↔ [A / x]C ⊆ [A / x]D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcalg 3095 | . . 3 ⊢ (A ∈ B → ([̣A / x]̣∀y(y ∈ C → y ∈ D) ↔ ∀y[̣A / x]̣(y ∈ C → y ∈ D))) | |
2 | sbcimg 3088 | . . . . 5 ⊢ (A ∈ B → ([̣A / x]̣(y ∈ C → y ∈ D) ↔ ([̣A / x]̣y ∈ C → [̣A / x]̣y ∈ D))) | |
3 | sbcel2g 3158 | . . . . . 6 ⊢ (A ∈ B → ([̣A / x]̣y ∈ C ↔ y ∈ [A / x]C)) | |
4 | sbcel2g 3158 | . . . . . 6 ⊢ (A ∈ B → ([̣A / x]̣y ∈ D ↔ y ∈ [A / x]D)) | |
5 | 3, 4 | imbi12d 311 | . . . . 5 ⊢ (A ∈ B → (([̣A / x]̣y ∈ C → [̣A / x]̣y ∈ D) ↔ (y ∈ [A / x]C → y ∈ [A / x]D))) |
6 | 2, 5 | bitrd 244 | . . . 4 ⊢ (A ∈ B → ([̣A / x]̣(y ∈ C → y ∈ D) ↔ (y ∈ [A / x]C → y ∈ [A / x]D))) |
7 | 6 | albidv 1625 | . . 3 ⊢ (A ∈ B → (∀y[̣A / x]̣(y ∈ C → y ∈ D) ↔ ∀y(y ∈ [A / x]C → y ∈ [A / x]D))) |
8 | 1, 7 | bitrd 244 | . 2 ⊢ (A ∈ B → ([̣A / x]̣∀y(y ∈ C → y ∈ D) ↔ ∀y(y ∈ [A / x]C → y ∈ [A / x]D))) |
9 | dfss2 3263 | . . 3 ⊢ (C ⊆ D ↔ ∀y(y ∈ C → y ∈ D)) | |
10 | 9 | sbcbii 3102 | . 2 ⊢ ([̣A / x]̣C ⊆ D ↔ [̣A / x]̣∀y(y ∈ C → y ∈ D)) |
11 | dfss2 3263 | . 2 ⊢ ([A / x]C ⊆ [A / x]D ↔ ∀y(y ∈ [A / x]C → y ∈ [A / x]D)) | |
12 | 8, 10, 11 | 3bitr4g 279 | 1 ⊢ (A ∈ B → ([̣A / x]̣C ⊆ D ↔ [A / x]C ⊆ [A / x]D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 [̣wsbc 3047 [csb 3137 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |