New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnsucelrlem4 | GIF version |
Description: Lemma for nnsucelr 4429. Remove and re-adjoin an element to a set. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
nnsucelrlem4 | ⊢ (A ∈ B → ((B ∖ {A}) ∪ {A}) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 3626 | . 2 ⊢ ((B ∖ {A}) ∪ {A}) = (B ∪ {A}) | |
2 | snssi 3853 | . . 3 ⊢ (A ∈ B → {A} ⊆ B) | |
3 | ssequn2 3437 | . . 3 ⊢ ({A} ⊆ B ↔ (B ∪ {A}) = B) | |
4 | 2, 3 | sylib 188 | . 2 ⊢ (A ∈ B → (B ∪ {A}) = B) |
5 | 1, 4 | syl5eq 2397 | 1 ⊢ (A ∈ B → ((B ∖ {A}) ∪ {A}) = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ∪ cun 3208 ⊆ wss 3258 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
This theorem is referenced by: nnsucelr 4429 enadj 6061 |
Copyright terms: Public domain | W3C validator |