NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ovcelem1 GIF version

Theorem ovcelem1 6172
Description: Lemma for ovce 6173. Set up stratification for the result. (Contributed by SF, 6-Mar-2015.)
Assertion
Ref Expression
ovcelem1 ((N V M W) → {g ab(1a N 1b M g ≈ (am b))} V)
Distinct variable groups:   a,b,g,M   N,a,b,g
Allowed substitution hints:   V(g,a,b)   W(g,a,b)

Proof of Theorem ovcelem1
Dummy variables f t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elima1c 4948 . . . 4 (g ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) ↔ a{a}, g (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c))
2 elima1c 4948 . . . . . 6 ({a}, g (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) ↔ b{b}, {a}, g ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )))
3 vex 2863 . . . . . . . . . . 11 g V
43otelins3 5793 . . . . . . . . . 10 ({b}, {a}, g Ins3 (( Pw1FnN) × ( Pw1FnM)) ↔ {b}, {a} (( Pw1FnN) × ( Pw1FnM)))
5 opelcnv 4894 . . . . . . . . . 10 ({b}, {a} (( Pw1FnN) × ( Pw1FnM)) ↔ {a}, {b} (( Pw1FnN) × ( Pw1FnM)))
6 opelxp 4812 . . . . . . . . . . 11 ({a}, {b} (( Pw1FnN) × ( Pw1FnM)) ↔ ({a} ( Pw1FnN) {b} ( Pw1FnM)))
7 brcnv 4893 . . . . . . . . . . . . . . 15 (t Pw1Fn {a} ↔ {a} Pw1Fn t)
8 vex 2863 . . . . . . . . . . . . . . . 16 a V
98brpw1fn 5855 . . . . . . . . . . . . . . 15 ({a} Pw1Fn tt = 1a)
107, 9bitri 240 . . . . . . . . . . . . . 14 (t Pw1Fn {a} ↔ t = 1a)
1110rexbii 2640 . . . . . . . . . . . . 13 (t N t Pw1Fn {a} ↔ t N t = 1a)
12 elima 4755 . . . . . . . . . . . . 13 ({a} ( Pw1FnN) ↔ t N t Pw1Fn {a})
13 risset 2662 . . . . . . . . . . . . 13 (1a Nt N t = 1a)
1411, 12, 133bitr4i 268 . . . . . . . . . . . 12 ({a} ( Pw1FnN) ↔ 1a N)
15 brcnv 4893 . . . . . . . . . . . . . . 15 (t Pw1Fn {b} ↔ {b} Pw1Fn t)
16 vex 2863 . . . . . . . . . . . . . . . 16 b V
1716brpw1fn 5855 . . . . . . . . . . . . . . 15 ({b} Pw1Fn tt = 1b)
1815, 17bitri 240 . . . . . . . . . . . . . 14 (t Pw1Fn {b} ↔ t = 1b)
1918rexbii 2640 . . . . . . . . . . . . 13 (t M t Pw1Fn {b} ↔ t M t = 1b)
20 elima 4755 . . . . . . . . . . . . 13 ({b} ( Pw1FnM) ↔ t M t Pw1Fn {b})
21 risset 2662 . . . . . . . . . . . . 13 (1b Mt M t = 1b)
2219, 20, 213bitr4i 268 . . . . . . . . . . . 12 ({b} ( Pw1FnM) ↔ 1b M)
2314, 22anbi12i 678 . . . . . . . . . . 11 (({a} ( Pw1FnN) {b} ( Pw1FnM)) ↔ (1a N 1b M))
246, 23bitri 240 . . . . . . . . . 10 ({a}, {b} (( Pw1FnN) × ( Pw1FnM)) ↔ (1a N 1b M))
254, 5, 243bitri 262 . . . . . . . . 9 ({b}, {a}, g Ins3 (( Pw1FnN) × ( Pw1FnM)) ↔ (1a N 1b M))
26 elrn2 4898 . . . . . . . . . 10 ({b}, {a}, g ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ tt, {b}, {a}, g ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ))
27 elin 3220 . . . . . . . . . . . 12 (t, {b}, {a}, g ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ (t, {b}, {a}, g Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) t, {b}, {a}, g Ins2 Ins2 ≈ ))
28 vex 2863 . . . . . . . . . . . . . . . . 17 t V
29 snex 4112 . . . . . . . . . . . . . . . . . 18 {b} V
30 snex 4112 . . . . . . . . . . . . . . . . . 18 {a} V
3129, 30opex 4589 . . . . . . . . . . . . . . . . 17 {b}, {a} V
3228, 31opex 4589 . . . . . . . . . . . . . . . 16 t, {b}, {a} V
3332elcompl 3226 . . . . . . . . . . . . . . 15 (t, {b}, {a} ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ ¬ t, {b}, {a} (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c))
34 elima1c 4948 . . . . . . . . . . . . . . . . 17 (t, {b}, {a} (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ f{f}, t, {b}, {a} ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))))
35 elsymdif 3224 . . . . . . . . . . . . . . . . . . 19 ({f}, t, {b}, {a} ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) ↔ ¬ ({f}, t, {b}, {a} Ins3 S {f}, t, {b}, {a} Ins2 SI3 ( Fns ⊗ ( S Image2nd ))))
3631otelins3 5793 . . . . . . . . . . . . . . . . . . . . 21 ({f}, t, {b}, {a} Ins3 S {f}, t S )
37 vex 2863 . . . . . . . . . . . . . . . . . . . . . 22 f V
3837, 28opelssetsn 4761 . . . . . . . . . . . . . . . . . . . . 21 ({f}, t S f t)
3936, 38bitri 240 . . . . . . . . . . . . . . . . . . . 20 ({f}, t, {b}, {a} Ins3 S f t)
4028otelins2 5792 . . . . . . . . . . . . . . . . . . . . 21 ({f}, t, {b}, {a} Ins2 SI3 ( Fns ⊗ ( S Image2nd )) ↔ {f}, {b}, {a} SI3 ( Fns ⊗ ( S Image2nd )))
4137, 16, 8otsnelsi3 5806 . . . . . . . . . . . . . . . . . . . . 21 ({f}, {b}, {a} SI3 ( Fns ⊗ ( S Image2nd )) ↔ f, b, a ( Fns ⊗ ( S Image2nd )))
42 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . 24 (f Fns bf, b Fns )
4337brfns 5834 . . . . . . . . . . . . . . . . . . . . . . . 24 (f Fns bf Fn b)
4442, 43bitr3i 242 . . . . . . . . . . . . . . . . . . . . . . 23 (f, b Fnsf Fn b)
45 opelco 4885 . . . . . . . . . . . . . . . . . . . . . . . 24 (f, a ( S Image2nd ) ↔ t(fImage2nd t t S a))
4637, 28brimage 5794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (fImage2nd tt = (2ndf))
47 dfrn5 5509 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran f = (2ndf)
4847eqeq2i 2363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (t = ran ft = (2ndf))
4946, 48bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (fImage2nd tt = ran f)
5028, 8brsset 4759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (t S at a)
5149, 50anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((fImage2nd t t S a) ↔ (t = ran f t a))
5251exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . 24 (t(fImage2nd t t S a) ↔ t(t = ran f t a))
5337rnex 5108 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran f V
54 sseq1 3293 . . . . . . . . . . . . . . . . . . . . . . . . 25 (t = ran f → (t a ↔ ran f a))
5553, 54ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . 24 (t(t = ran f t a) ↔ ran f a)
5645, 52, 553bitri 262 . . . . . . . . . . . . . . . . . . . . . . 23 (f, a ( S Image2nd ) ↔ ran f a)
5744, 56anbi12i 678 . . . . . . . . . . . . . . . . . . . . . 22 ((f, b Fns f, a ( S Image2nd )) ↔ (f Fn b ran f a))
58 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . . 22 (f, b, a ( Fns ⊗ ( S Image2nd )) ↔ (f, b Fns f, a ( S Image2nd )))
59 df-f 4792 . . . . . . . . . . . . . . . . . . . . . 22 (f:b–→a ↔ (f Fn b ran f a))
6057, 58, 593bitr4i 268 . . . . . . . . . . . . . . . . . . . . 21 (f, b, a ( Fns ⊗ ( S Image2nd )) ↔ f:b–→a)
6140, 41, 603bitri 262 . . . . . . . . . . . . . . . . . . . 20 ({f}, t, {b}, {a} Ins2 SI3 ( Fns ⊗ ( S Image2nd )) ↔ f:b–→a)
6239, 61bibi12i 306 . . . . . . . . . . . . . . . . . . 19 (({f}, t, {b}, {a} Ins3 S {f}, t, {b}, {a} Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) ↔ (f tf:b–→a))
6335, 62xchbinx 301 . . . . . . . . . . . . . . . . . 18 ({f}, t, {b}, {a} ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) ↔ ¬ (f tf:b–→a))
6463exbii 1582 . . . . . . . . . . . . . . . . 17 (f{f}, t, {b}, {a} ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) ↔ f ¬ (f tf:b–→a))
65 exnal 1574 . . . . . . . . . . . . . . . . 17 (f ¬ (f tf:b–→a) ↔ ¬ f(f tf:b–→a))
6634, 64, 653bitrri 263 . . . . . . . . . . . . . . . 16 f(f tf:b–→a) ↔ t, {b}, {a} (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c))
6766con1bii 321 . . . . . . . . . . . . . . 15 t, {b}, {a} (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ f(f tf:b–→a))
6833, 67bitri 240 . . . . . . . . . . . . . 14 (t, {b}, {a} ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ f(f tf:b–→a))
693oqelins4 5795 . . . . . . . . . . . . . 14 (t, {b}, {a}, g Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ t, {b}, {a} ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c))
708, 16mapval 6012 . . . . . . . . . . . . . . . 16 (am b) = {f f:b–→a}
7170eqeq2i 2363 . . . . . . . . . . . . . . 15 (t = (am b) ↔ t = {f f:b–→a})
72 abeq2 2459 . . . . . . . . . . . . . . 15 (t = {f f:b–→a} ↔ f(f tf:b–→a))
7371, 72bitri 240 . . . . . . . . . . . . . 14 (t = (am b) ↔ f(f tf:b–→a))
7468, 69, 733bitr4i 268 . . . . . . . . . . . . 13 (t, {b}, {a}, g Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ↔ t = (am b))
7529otelins2 5792 . . . . . . . . . . . . . 14 (t, {b}, {a}, g Ins2 Ins2 ≈ ↔ t, {a}, g Ins2 ≈ )
7630otelins2 5792 . . . . . . . . . . . . . 14 (t, {a}, g Ins2 ≈ ↔ t, g ≈ )
77 df-br 4641 . . . . . . . . . . . . . . 15 (tgt, g ≈ )
78 brcnv 4893 . . . . . . . . . . . . . . 15 (tggt)
7977, 78bitr3i 242 . . . . . . . . . . . . . 14 (t, g ≈ ↔ gt)
8075, 76, 793bitri 262 . . . . . . . . . . . . 13 (t, {b}, {a}, g Ins2 Ins2 ≈ ↔ gt)
8174, 80anbi12i 678 . . . . . . . . . . . 12 ((t, {b}, {a}, g Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) t, {b}, {a}, g Ins2 Ins2 ≈ ) ↔ (t = (am b) gt))
8227, 81bitri 240 . . . . . . . . . . 11 (t, {b}, {a}, g ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ (t = (am b) gt))
8382exbii 1582 . . . . . . . . . 10 (tt, {b}, {a}, g ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ t(t = (am b) gt))
84 ovex 5552 . . . . . . . . . . 11 (am b) V
85 breq2 4644 . . . . . . . . . . 11 (t = (am b) → (gtg ≈ (am b)))
8684, 85ceqsexv 2895 . . . . . . . . . 10 (t(t = (am b) gt) ↔ g ≈ (am b))
8726, 83, 863bitri 262 . . . . . . . . 9 ({b}, {a}, g ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) ↔ g ≈ (am b))
8825, 87anbi12i 678 . . . . . . . 8 (({b}, {a}, g Ins3 (( Pw1FnN) × ( Pw1FnM)) {b}, {a}, g ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ ((1a N 1b M) g ≈ (am b)))
89 elin 3220 . . . . . . . 8 ({b}, {a}, g ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ ({b}, {a}, g Ins3 (( Pw1FnN) × ( Pw1FnM)) {b}, {a}, g ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )))
90 df-3an 936 . . . . . . . 8 ((1a N 1b M g ≈ (am b)) ↔ ((1a N 1b M) g ≈ (am b)))
9188, 89, 903bitr4i 268 . . . . . . 7 ({b}, {a}, g ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ (1a N 1b M g ≈ (am b)))
9291exbii 1582 . . . . . 6 (b{b}, {a}, g ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) ↔ b(1a N 1b M g ≈ (am b)))
932, 92bitri 240 . . . . 5 ({a}, g (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) ↔ b(1a N 1b M g ≈ (am b)))
9493exbii 1582 . . . 4 (a{a}, g (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) ↔ ab(1a N 1b M g ≈ (am b)))
951, 94bitri 240 . . 3 (g ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) ↔ ab(1a N 1b M g ≈ (am b)))
9695abbi2i 2465 . 2 ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) = {g ab(1a N 1b M g ≈ (am b))}
97 pw1fnex 5853 . . . . . 6 Pw1Fn V
9897cnvex 5103 . . . . 5 Pw1Fn V
99 imaexg 4747 . . . . 5 (( Pw1Fn V N V) → ( Pw1FnN) V)
10098, 99mpan 651 . . . 4 (N V → ( Pw1FnN) V)
101 imaexg 4747 . . . . 5 (( Pw1Fn V M W) → ( Pw1FnM) V)
10298, 101mpan 651 . . . 4 (M W → ( Pw1FnM) V)
103 xpexg 5115 . . . 4 ((( Pw1FnN) V ( Pw1FnM) V) → (( Pw1FnN) × ( Pw1FnM)) V)
104100, 102, 103syl2an 463 . . 3 ((N V M W) → (( Pw1FnN) × ( Pw1FnM)) V)
105 cnvexg 5102 . . . 4 ((( Pw1FnN) × ( Pw1FnM)) V → (( Pw1FnN) × ( Pw1FnM)) V)
106 ins3exg 5797 . . . 4 ((( Pw1FnN) × ( Pw1FnM)) V → Ins3 (( Pw1FnN) × ( Pw1FnM)) V)
107105, 106syl 15 . . 3 ((( Pw1FnN) × ( Pw1FnM)) V → Ins3 (( Pw1FnN) × ( Pw1FnM)) V)
108 ssetex 4745 . . . . . . . . . . . 12 S V
109108ins3ex 5799 . . . . . . . . . . 11 Ins3 S V
110 fnsex 5833 . . . . . . . . . . . . . 14 Fns V
111 2ndex 5113 . . . . . . . . . . . . . . . 16 2nd V
112111imageex 5802 . . . . . . . . . . . . . . 15 Image2nd V
113108, 112coex 4751 . . . . . . . . . . . . . 14 ( S Image2nd ) V
114110, 113txpex 5786 . . . . . . . . . . . . 13 ( Fns ⊗ ( S Image2nd )) V
115114si3ex 5807 . . . . . . . . . . . 12 SI3 ( Fns ⊗ ( S Image2nd )) V
116115ins2ex 5798 . . . . . . . . . . 11 Ins2 SI3 ( Fns ⊗ ( S Image2nd )) V
117109, 116symdifex 4109 . . . . . . . . . 10 ( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) V
118 1cex 4143 . . . . . . . . . 10 1c V
119117, 118imaex 4748 . . . . . . . . 9 (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
120119complex 4105 . . . . . . . 8 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
121120ins4ex 5800 . . . . . . 7 Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) V
122 enex 6032 . . . . . . . . . 10 V
123122cnvex 5103 . . . . . . . . 9 V
124123ins2ex 5798 . . . . . . . 8 Ins2 V
125124ins2ex 5798 . . . . . . 7 Ins2 Ins2 V
126121, 125inex 4106 . . . . . 6 ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
127126rnex 5108 . . . . 5 ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V
128 inexg 4101 . . . . 5 (( Ins3 (( Pw1FnN) × ( Pw1FnM)) V ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ ) V) → ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) V)
129127, 128mpan2 652 . . . 4 ( Ins3 (( Pw1FnN) × ( Pw1FnM)) V → ( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) V)
130 imaexg 4747 . . . . 5 ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) V 1c V) → (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) V)
131118, 130mpan2 652 . . . 4 (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) V → (( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) V)
132 imaexg 4747 . . . . 5 (((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) V 1c V) → ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) V)
133118, 132mpan2 652 . . . 4 ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) V → ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) V)
134129, 131, 1333syl 18 . . 3 ( Ins3 (( Pw1FnN) × ( Pw1FnM)) V → ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) V)
135104, 107, 1343syl 18 . 2 ((N V M W) → ((( Ins3 (( Pw1FnN) × ( Pw1FnM)) ∩ ran ( Ins4 ∼ (( Ins3 S Ins2 SI3 ( Fns ⊗ ( S Image2nd ))) “ 1c) ∩ Ins2 Ins2 ≈ )) “ 1c) “ 1c) V)
13696, 135syl5eqelr 2438 1 ((N V M W) → {g ab(1a N 1b M g ≈ (am b))} V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   w3a 934  wal 1540  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206  cin 3209  csymdif 3210   wss 3258  {csn 3738  1cc1c 4135  1cpw1 4136  cop 4562   class class class wbr 4640   S csset 4720   ccom 4722  cima 4723   × cxp 4771  ccnv 4772  ran crn 4774   Fn wfn 4777  –→wf 4778  2nd c2nd 4784  (class class class)co 5526  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752  Imagecimage 5754   Ins4 cins4 5756   SI3 csi3 5758   Fns cfns 5762   Pw1Fn cpw1fn 5766  m cmap 6000  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-map 6002  df-en 6030
This theorem is referenced by:  ovce  6173  fnce  6177
  Copyright terms: Public domain W3C validator