Step | Hyp | Ref
| Expression |
1 | | elima1c 4948 |
. . . 4
⊢ (g ∈ ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ↔ ∃a〈{a}, g〉 ∈ (( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “
1c)) |
2 | | elima1c 4948 |
. . . . . 6
⊢ (〈{a}, g〉 ∈ (( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
↔ ∃b〈{b}, 〈{a}, g〉〉 ∈ ( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ))) |
3 | | vex 2863 |
. . . . . . . . . . 11
⊢ g ∈
V |
4 | 3 | otelins3 5793 |
. . . . . . . . . 10
⊢ (〈{b}, 〈{a}, g〉〉 ∈ Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ↔ 〈{b}, {a}〉 ∈ ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M))) |
5 | | opelcnv 4894 |
. . . . . . . . . 10
⊢ (〈{b}, {a}〉 ∈ ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ↔ 〈{a}, {b}〉 ∈ ((◡ Pw1Fn “ N)
× (◡ Pw1Fn “ M))) |
6 | | opelxp 4812 |
. . . . . . . . . . 11
⊢ (〈{a}, {b}〉 ∈ ((◡ Pw1Fn “ N)
× (◡ Pw1Fn “ M))
↔ ({a} ∈ (◡ Pw1Fn “ N)
∧ {b}
∈ (◡
Pw1Fn “ M))) |
7 | | brcnv 4893 |
. . . . . . . . . . . . . . 15
⊢ (t◡ Pw1Fn {a} ↔
{a} Pw1Fn
t) |
8 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ a ∈
V |
9 | 8 | brpw1fn 5855 |
. . . . . . . . . . . . . . 15
⊢ ({a} Pw1Fn t ↔ t =
℘1a) |
10 | 7, 9 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (t◡ Pw1Fn {a} ↔
t = ℘1a) |
11 | 10 | rexbii 2640 |
. . . . . . . . . . . . 13
⊢ (∃t ∈ N t◡ Pw1Fn {a} ↔
∃t ∈ N t = ℘1a) |
12 | | elima 4755 |
. . . . . . . . . . . . 13
⊢ ({a} ∈ (◡ Pw1Fn “
N) ↔ ∃t ∈ N t◡ Pw1Fn {a}) |
13 | | risset 2662 |
. . . . . . . . . . . . 13
⊢ (℘1a ∈ N ↔ ∃t ∈ N t = ℘1a) |
14 | 11, 12, 13 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ ({a} ∈ (◡ Pw1Fn “
N) ↔ ℘1a ∈ N) |
15 | | brcnv 4893 |
. . . . . . . . . . . . . . 15
⊢ (t◡ Pw1Fn {b} ↔
{b} Pw1Fn
t) |
16 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ b ∈
V |
17 | 16 | brpw1fn 5855 |
. . . . . . . . . . . . . . 15
⊢ ({b} Pw1Fn t ↔ t =
℘1b) |
18 | 15, 17 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (t◡ Pw1Fn {b} ↔
t = ℘1b) |
19 | 18 | rexbii 2640 |
. . . . . . . . . . . . 13
⊢ (∃t ∈ M t◡ Pw1Fn {b} ↔
∃t ∈ M t = ℘1b) |
20 | | elima 4755 |
. . . . . . . . . . . . 13
⊢ ({b} ∈ (◡ Pw1Fn “
M) ↔ ∃t ∈ M t◡ Pw1Fn {b}) |
21 | | risset 2662 |
. . . . . . . . . . . . 13
⊢ (℘1b ∈ M ↔ ∃t ∈ M t = ℘1b) |
22 | 19, 20, 21 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ ({b} ∈ (◡ Pw1Fn “
M) ↔ ℘1b ∈ M) |
23 | 14, 22 | anbi12i 678 |
. . . . . . . . . . 11
⊢ (({a} ∈ (◡ Pw1Fn “
N) ∧
{b} ∈
(◡ Pw1Fn
“ M)) ↔ (℘1a ∈ N ∧ ℘1b ∈ M)) |
24 | 6, 23 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{a}, {b}〉 ∈ ((◡ Pw1Fn “ N)
× (◡ Pw1Fn “ M))
↔ (℘1a ∈ N ∧ ℘1b ∈ M)) |
25 | 4, 5, 24 | 3bitri 262 |
. . . . . . . . 9
⊢ (〈{b}, 〈{a}, g〉〉 ∈ Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ↔ (℘1a ∈ N ∧ ℘1b ∈ M)) |
26 | | elrn2 4898 |
. . . . . . . . . 10
⊢ (〈{b}, 〈{a}, g〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ↔ ∃t〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) |
27 | | elin 3220 |
. . . . . . . . . . . 12
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ↔ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∧ 〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins2 Ins2 ◡ ≈
)) |
28 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ t ∈
V |
29 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {b} ∈
V |
30 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {a} ∈
V |
31 | 29, 30 | opex 4589 |
. . . . . . . . . . . . . . . . 17
⊢ 〈{b}, {a}〉 ∈ V |
32 | 28, 31 | opex 4589 |
. . . . . . . . . . . . . . . 16
⊢ 〈t, 〈{b}, {a}〉〉 ∈
V |
33 | 32 | elcompl 3226 |
. . . . . . . . . . . . . . 15
⊢ (〈t, 〈{b}, {a}〉〉 ∈ ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ↔ ¬ 〈t, 〈{b}, {a}〉〉 ∈ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c)) |
34 | | elima1c 4948 |
. . . . . . . . . . . . . . . . 17
⊢ (〈t, 〈{b}, {a}〉〉 ∈ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ ∃f〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ ( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd )))) |
35 | | elsymdif 3224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ ( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) ↔ ¬ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins3 S ↔ 〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd )))) |
36 | 31 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins3 S ↔ 〈{f}, t〉 ∈ S ) |
37 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ f ∈
V |
38 | 37, 28 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{f}, t〉 ∈ S ↔ f ∈ t) |
39 | 36, 38 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins3 S ↔ f ∈ t) |
40 | 28 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd )) ↔ 〈{f}, 〈{b}, {a}〉〉 ∈ SI3 ( Fns
⊗ ( S ∘
Image2nd ))) |
41 | 37, 16, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{f}, 〈{b}, {a}〉〉 ∈ SI3 ( Fns
⊗ ( S ∘
Image2nd )) ↔ 〈f, 〈b, a〉〉 ∈ ( Fns ⊗
( S ∘
Image2nd ))) |
42 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (f Fns b ↔ 〈f, b〉 ∈ Fns ) |
43 | 37 | brfns 5834 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (f Fns b ↔ f Fn
b) |
44 | 42, 43 | bitr3i 242 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈f, b〉 ∈ Fns ↔ f Fn b) |
45 | | opelco 4885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈f, a〉 ∈ ( S ∘ Image2nd ) ↔ ∃t(fImage2nd t ∧ t S a)) |
46 | 37, 28 | brimage 5794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (fImage2nd t ↔ t =
(2nd “ f)) |
47 | | dfrn5 5509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ran f = (2nd “ f) |
48 | 47 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (t = ran f ↔
t = (2nd “ f)) |
49 | 46, 48 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (fImage2nd t ↔ t = ran
f) |
50 | 28, 8 | brsset 4759 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (t S a ↔ t ⊆ a) |
51 | 49, 50 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((fImage2nd t ∧ t S a) ↔ (t =
ran f ∧
t ⊆
a)) |
52 | 51 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t(fImage2nd t ∧ t S a) ↔ ∃t(t = ran f ∧ t ⊆ a)) |
53 | 37 | rnex 5108 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ran f ∈
V |
54 | | sseq1 3293 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (t = ran f →
(t ⊆
a ↔ ran f ⊆ a)) |
55 | 53, 54 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t(t = ran f ∧ t ⊆ a) ↔
ran f ⊆
a) |
56 | 45, 52, 55 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈f, a〉 ∈ ( S ∘ Image2nd ) ↔ ran f ⊆ a) |
57 | 44, 56 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((〈f, b〉 ∈ Fns ∧ 〈f, a〉 ∈ ( S ∘
Image2nd )) ↔ (f Fn
b ∧ ran
f ⊆
a)) |
58 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈f, 〈b, a〉〉 ∈ ( Fns ⊗ ( S ∘ Image2nd )) ↔ (〈f, b〉 ∈ Fns ∧ 〈f, a〉 ∈ ( S ∘
Image2nd ))) |
59 | | df-f 4792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (f:b–→a
↔ (f Fn b ∧ ran f ⊆ a)) |
60 | 57, 58, 59 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈f, 〈b, a〉〉 ∈ ( Fns ⊗ ( S ∘ Image2nd )) ↔ f:b–→a) |
61 | 40, 41, 60 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd )) ↔ f:b–→a) |
62 | 39, 61 | bibi12i 306 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins3 S ↔ 〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) ↔ (f ∈ t ↔ f:b–→a)) |
63 | 35, 62 | xchbinx 301 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ ( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) ↔ ¬ (f
∈ t
↔ f:b–→a)) |
64 | 63 | exbii 1582 |
. . . . . . . . . . . . . . . . 17
⊢ (∃f〈{f}, 〈t, 〈{b}, {a}〉〉〉 ∈ ( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) ↔ ∃f ¬ (f ∈ t ↔
f:b–→a)) |
65 | | exnal 1574 |
. . . . . . . . . . . . . . . . 17
⊢ (∃f ¬
(f ∈
t ↔ f:b–→a)
↔ ¬ ∀f(f ∈ t ↔
f:b–→a)) |
66 | 34, 64, 65 | 3bitrri 263 |
. . . . . . . . . . . . . . . 16
⊢ (¬ ∀f(f ∈ t ↔ f:b–→a)
↔ 〈t, 〈{b}, {a}〉〉 ∈ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c)) |
67 | 66 | con1bii 321 |
. . . . . . . . . . . . . . 15
⊢ (¬ 〈t, 〈{b}, {a}〉〉 ∈ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ ∀f(f ∈ t ↔
f:b–→a)) |
68 | 33, 67 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (〈t, 〈{b}, {a}〉〉 ∈ ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ↔ ∀f(f ∈ t ↔ f:b–→a)) |
69 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . 14
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ 〈t, 〈{b}, {a}〉〉 ∈ ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c)) |
70 | 8, 16 | mapval 6012 |
. . . . . . . . . . . . . . . 16
⊢ (a ↑m b) = {f ∣ f:b–→a} |
71 | 70 | eqeq2i 2363 |
. . . . . . . . . . . . . . 15
⊢ (t = (a
↑m b) ↔
t = {f
∣ f:b–→a}) |
72 | | abeq2 2459 |
. . . . . . . . . . . . . . 15
⊢ (t = {f ∣ f:b–→a}
↔ ∀f(f ∈ t ↔
f:b–→a)) |
73 | 71, 72 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (t = (a
↑m b) ↔ ∀f(f ∈ t ↔ f:b–→a)) |
74 | 68, 69, 73 | 3bitr4i 268 |
. . . . . . . . . . . . 13
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ↔ t = (a ↑m b)) |
75 | 29 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins2 Ins2 ◡ ≈
↔ 〈t, 〈{a}, g〉〉 ∈ Ins2 ◡ ≈ ) |
76 | 30 | otelins2 5792 |
. . . . . . . . . . . . . 14
⊢ (〈t, 〈{a}, g〉〉 ∈ Ins2 ◡ ≈
↔ 〈t, g〉 ∈ ◡ ≈ ) |
77 | | df-br 4641 |
. . . . . . . . . . . . . . 15
⊢ (t◡ ≈
g ↔ 〈t, g〉 ∈ ◡ ≈
) |
78 | | brcnv 4893 |
. . . . . . . . . . . . . . 15
⊢ (t◡ ≈
g ↔ g ≈ t) |
79 | 77, 78 | bitr3i 242 |
. . . . . . . . . . . . . 14
⊢ (〈t, g〉 ∈ ◡ ≈
↔ g ≈ t) |
80 | 75, 76, 79 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins2 Ins2 ◡ ≈
↔ g ≈ t) |
81 | 74, 80 | anbi12i 678 |
. . . . . . . . . . . 12
⊢ ((〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∧ 〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ Ins2 Ins2 ◡ ≈ )
↔ (t = (a ↑m b) ∧ g ≈ t)) |
82 | 27, 81 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ↔ (t = (a
↑m b) ∧ g ≈
t)) |
83 | 82 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃t〈t, 〈{b}, 〈{a}, g〉〉〉 ∈ ( Ins4 ∼ ((
Ins3 S ⊕
Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ↔ ∃t(t = (a
↑m b) ∧ g ≈
t)) |
84 | | ovex 5552 |
. . . . . . . . . . 11
⊢ (a ↑m b) ∈
V |
85 | | breq2 4644 |
. . . . . . . . . . 11
⊢ (t = (a
↑m b) →
(g ≈ t ↔ g
≈ (a ↑m
b))) |
86 | 84, 85 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃t(t = (a
↑m b) ∧ g ≈
t) ↔ g ≈ (a
↑m b)) |
87 | 26, 83, 86 | 3bitri 262 |
. . . . . . . . 9
⊢ (〈{b}, 〈{a}, g〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ↔ g ≈ (a
↑m b)) |
88 | 25, 87 | anbi12i 678 |
. . . . . . . 8
⊢ ((〈{b}, 〈{a}, g〉〉 ∈ Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∧
〈{b},
〈{a},
g〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ↔ ((℘1a ∈ N ∧ ℘1b ∈ M) ∧ g ≈ (a
↑m b))) |
89 | | elin 3220 |
. . . . . . . 8
⊢ (〈{b}, 〈{a}, g〉〉 ∈ ( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ↔ (〈{b}, 〈{a}, g〉〉 ∈ Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∧
〈{b},
〈{a},
g〉〉 ∈ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ))) |
90 | | df-3an 936 |
. . . . . . . 8
⊢ ((℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b)) ↔
((℘1a ∈ N ∧ ℘1b ∈ M) ∧ g ≈ (a
↑m b))) |
91 | 88, 89, 90 | 3bitr4i 268 |
. . . . . . 7
⊢ (〈{b}, 〈{a}, g〉〉 ∈ ( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ↔ (℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))) |
92 | 91 | exbii 1582 |
. . . . . 6
⊢ (∃b〈{b}, 〈{a}, g〉〉 ∈ ( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ↔ ∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))) |
93 | 2, 92 | bitri 240 |
. . . . 5
⊢ (〈{a}, g〉 ∈ (( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
↔ ∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))) |
94 | 93 | exbii 1582 |
. . . 4
⊢ (∃a〈{a}, g〉 ∈ (( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
↔ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))) |
95 | 1, 94 | bitri 240 |
. . 3
⊢ (g ∈ ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ↔ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))) |
96 | 95 | abbi2i 2465 |
. 2
⊢ ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) = {g ∣ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))} |
97 | | pw1fnex 5853 |
. . . . . 6
⊢ Pw1Fn ∈
V |
98 | 97 | cnvex 5103 |
. . . . 5
⊢ ◡ Pw1Fn ∈ V |
99 | | imaexg 4747 |
. . . . 5
⊢ ((◡ Pw1Fn ∈ V ∧ N ∈ V) → (◡
Pw1Fn “ N) ∈
V) |
100 | 98, 99 | mpan 651 |
. . . 4
⊢ (N ∈ V → (◡
Pw1Fn “ N) ∈
V) |
101 | | imaexg 4747 |
. . . . 5
⊢ ((◡ Pw1Fn ∈ V ∧ M ∈ W) → (◡
Pw1Fn “ M) ∈
V) |
102 | 98, 101 | mpan 651 |
. . . 4
⊢ (M ∈ W → (◡
Pw1Fn “ M) ∈
V) |
103 | | xpexg 5115 |
. . . 4
⊢ (((◡ Pw1Fn “
N) ∈ V
∧ (◡
Pw1Fn “ M) ∈ V) →
((◡ Pw1Fn
“ N) × (◡ Pw1Fn “
M)) ∈
V) |
104 | 100, 102,
103 | syl2an 463 |
. . 3
⊢ ((N ∈ V ∧ M ∈ W) → ((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈
V) |
105 | | cnvexg 5102 |
. . . 4
⊢ (((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈ V
→ ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈
V) |
106 | | ins3exg 5797 |
. . . 4
⊢ (◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∈ V
→ Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∈
V) |
107 | 105, 106 | syl 15 |
. . 3
⊢ (((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈ V
→ Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∈
V) |
108 | | ssetex 4745 |
. . . . . . . . . . . 12
⊢ S ∈
V |
109 | 108 | ins3ex 5799 |
. . . . . . . . . . 11
⊢ Ins3 S ∈ V |
110 | | fnsex 5833 |
. . . . . . . . . . . . . 14
⊢ Fns ∈
V |
111 | | 2ndex 5113 |
. . . . . . . . . . . . . . . 16
⊢ 2nd
∈ V |
112 | 111 | imageex 5802 |
. . . . . . . . . . . . . . 15
⊢ Image2nd
∈ V |
113 | 108, 112 | coex 4751 |
. . . . . . . . . . . . . 14
⊢ ( S ∘
Image2nd ) ∈ V |
114 | 110, 113 | txpex 5786 |
. . . . . . . . . . . . 13
⊢ ( Fns ⊗ ( S ∘ Image2nd )) ∈ V |
115 | 114 | si3ex 5807 |
. . . . . . . . . . . 12
⊢ SI3 ( Fns
⊗ ( S ∘
Image2nd )) ∈ V |
116 | 115 | ins2ex 5798 |
. . . . . . . . . . 11
⊢ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd )) ∈ V |
117 | 109, 116 | symdifex 4109 |
. . . . . . . . . 10
⊢ ( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) ∈ V |
118 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
119 | 117, 118 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∈ V |
120 | 119 | complex 4105 |
. . . . . . . 8
⊢ ∼ (( Ins3 S ⊕ Ins2 SI3
( Fns ⊗ ( S
∘ Image2nd ))) “
1c) ∈ V |
121 | 120 | ins4ex 5800 |
. . . . . . 7
⊢ Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∈ V |
122 | | enex 6032 |
. . . . . . . . . 10
⊢ ≈ ∈ V |
123 | 122 | cnvex 5103 |
. . . . . . . . 9
⊢ ◡ ≈ ∈
V |
124 | 123 | ins2ex 5798 |
. . . . . . . 8
⊢ Ins2 ◡ ≈
∈ V |
125 | 124 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 ◡ ≈ ∈
V |
126 | 121, 125 | inex 4106 |
. . . . . 6
⊢ ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V |
127 | 126 | rnex 5108 |
. . . . 5
⊢ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V |
128 | | inexg 4101 |
. . . . 5
⊢ (( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈ V
∧ ran ( Ins4
∼ (( Ins3 S
⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ ) ∈ V) → ( Ins3
◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ∈ V) |
129 | 127, 128 | mpan2 652 |
. . . 4
⊢ ( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈ V
→ ( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ∈ V) |
130 | | imaexg 4747 |
. . . . 5
⊢ ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ∈ V ∧
1c ∈ V) → (( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
∈ V) |
131 | 118, 130 | mpan2 652 |
. . . 4
⊢ (( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) ∈ V → (( Ins3
◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
∈ V) |
132 | | imaexg 4747 |
. . . . 5
⊢ (((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
∈ V ∧
1c ∈ V) → ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ∈
V) |
133 | 118, 132 | mpan2 652 |
. . . 4
⊢ ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
∈ V → ((( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ∈
V) |
134 | 129, 131,
133 | 3syl 18 |
. . 3
⊢ ( Ins3 ◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∈ V
→ ((( Ins3 ◡((◡
Pw1Fn “ N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ∈
V) |
135 | 104, 107,
134 | 3syl 18 |
. 2
⊢ ((N ∈ V ∧ M ∈ W) → ((( Ins3
◡((◡ Pw1Fn “
N) × (◡ Pw1Fn “
M)) ∩ ran ( Ins4 ∼ (( Ins3 S ⊕ Ins2 SI3 ( Fns
⊗ ( S ∘
Image2nd ))) “ 1c) ∩ Ins2 Ins2 ◡ ≈ )) “ 1c)
“ 1c) ∈
V) |
136 | 96, 135 | syl5eqelr 2438 |
1
⊢ ((N ∈ V ∧ M ∈ W) → {g
∣ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a
↑m b))} ∈ V) |