| Step | Hyp | Ref
| Expression |
| 1 | | unab 3522 |
. . 3
⊢ ({x ∣ ¬
(x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
{x ∣
(¬ (x +c N) = (x
+c P) ∨ N = P)} |
| 2 | | complab 3525 |
. . . 4
⊢ ∼ {x ∣ (x +c N) = (x
+c P)} = {x ∣ ¬
(x +c N) = (x
+c P)} |
| 3 | 2 | uneq1i 3415 |
. . 3
⊢ ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
({x ∣
¬ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) |
| 4 | | imor 401 |
. . . 4
⊢ (((x +c N) = (x
+c P) → N = P) ↔
(¬ (x +c N) = (x
+c P) ∨ N = P)) |
| 5 | 4 | abbii 2466 |
. . 3
⊢ {x ∣ ((x +c N) = (x
+c P) → N = P)} =
{x ∣
(¬ (x +c N) = (x
+c P) ∨ N = P)} |
| 6 | 1, 3, 5 | 3eqtr4i 2383 |
. 2
⊢ ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
{x ∣
((x +c N) = (x
+c P) → N = P)} |
| 7 | | addceq2 4385 |
. . . . . . . 8
⊢ (n = N →
(x +c n) = (x
+c N)) |
| 8 | 7 | eqeq1d 2361 |
. . . . . . 7
⊢ (n = N →
((x +c n) = (x
+c p) ↔ (x +c N) = (x
+c p))) |
| 9 | 8 | abbidv 2468 |
. . . . . 6
⊢ (n = N →
{x ∣
(x +c n) = (x
+c p)} = {x ∣ (x +c N) = (x
+c p)}) |
| 10 | 9 | eleq1d 2419 |
. . . . 5
⊢ (n = N →
({x ∣
(x +c n) = (x
+c p)} ∈ V ↔ {x
∣ (x
+c N) = (x +c p)} ∈
V)) |
| 11 | | addceq2 4385 |
. . . . . . . 8
⊢ (p = P →
(x +c p) = (x
+c P)) |
| 12 | 11 | eqeq2d 2364 |
. . . . . . 7
⊢ (p = P →
((x +c N) = (x
+c p) ↔ (x +c N) = (x
+c P))) |
| 13 | 12 | abbidv 2468 |
. . . . . 6
⊢ (p = P →
{x ∣
(x +c N) = (x
+c p)} = {x ∣ (x +c N) = (x
+c P)}) |
| 14 | 13 | eleq1d 2419 |
. . . . 5
⊢ (p = P →
({x ∣
(x +c N) = (x
+c p)} ∈ V ↔ {x
∣ (x
+c N) = (x +c P)} ∈
V)) |
| 15 | | elfix 5788 |
. . . . . . . 8
⊢ (x ∈ Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ↔ x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x) |
| 16 | | brco 4884 |
. . . . . . . . 9
⊢ (x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x ↔
∃y(x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x)) |
| 17 | | addccan2nclem1 6264 |
. . . . . . . . . . 11
⊢ (x( AddC ∘ ◡(1st ↾ (V × {n})))y ↔
y = (x
+c n)) |
| 18 | | brcnv 4893 |
. . . . . . . . . . . 12
⊢ (y◡( AddC ∘ ◡(1st ↾ (V × {p})))x ↔
x( AddC ∘ ◡(1st ↾ (V × {p})))y) |
| 19 | | addccan2nclem1 6264 |
. . . . . . . . . . . 12
⊢ (x( AddC ∘ ◡(1st ↾ (V × {p})))y ↔
y = (x
+c p)) |
| 20 | 18, 19 | bitri 240 |
. . . . . . . . . . 11
⊢ (y◡( AddC ∘ ◡(1st ↾ (V × {p})))x ↔
y = (x
+c p)) |
| 21 | 17, 20 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x) ↔
(y = (x
+c n) ∧ y = (x +c p))) |
| 22 | 21 | exbii 1582 |
. . . . . . . . 9
⊢ (∃y(x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x) ↔
∃y(y = (x +c n) ∧ y = (x
+c p))) |
| 23 | 16, 22 | bitri 240 |
. . . . . . . 8
⊢ (x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x ↔
∃y(y = (x +c n) ∧ y = (x
+c p))) |
| 24 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
| 25 | | vex 2863 |
. . . . . . . . . 10
⊢ n ∈
V |
| 26 | 24, 25 | addcex 4395 |
. . . . . . . . 9
⊢ (x +c n) ∈
V |
| 27 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (y = (x
+c n) → (y = (x
+c p) ↔ (x +c n) = (x
+c p))) |
| 28 | 26, 27 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃y(y = (x
+c n) ∧ y = (x +c p)) ↔ (x
+c n) = (x +c p)) |
| 29 | 15, 23, 28 | 3bitri 262 |
. . . . . . 7
⊢ (x ∈ Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ↔ (x
+c n) = (x +c p)) |
| 30 | 29 | eqabi 2465 |
. . . . . 6
⊢ Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) = {x
∣ (x
+c n) = (x +c p)} |
| 31 | | addcfnex 5825 |
. . . . . . . . . 10
⊢ AddC ∈
V |
| 32 | | 1stex 4740 |
. . . . . . . . . . . 12
⊢ 1st
∈ V |
| 33 | | vvex 4110 |
. . . . . . . . . . . . 13
⊢ V ∈ V |
| 34 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {p} ∈
V |
| 35 | 33, 34 | xpex 5116 |
. . . . . . . . . . . 12
⊢ (V ×
{p}) ∈
V |
| 36 | 32, 35 | resex 5118 |
. . . . . . . . . . 11
⊢ (1st
↾ (V × {p})) ∈
V |
| 37 | 36 | cnvex 5103 |
. . . . . . . . . 10
⊢ ◡(1st ↾ (V × {p})) ∈
V |
| 38 | 31, 37 | coex 4751 |
. . . . . . . . 9
⊢ ( AddC ∘ ◡(1st ↾ (V × {p}))) ∈
V |
| 39 | 38 | cnvex 5103 |
. . . . . . . 8
⊢ ◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∈
V |
| 40 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {n} ∈
V |
| 41 | 33, 40 | xpex 5116 |
. . . . . . . . . . 11
⊢ (V ×
{n}) ∈
V |
| 42 | 32, 41 | resex 5118 |
. . . . . . . . . 10
⊢ (1st
↾ (V × {n})) ∈
V |
| 43 | 42 | cnvex 5103 |
. . . . . . . . 9
⊢ ◡(1st ↾ (V × {n})) ∈
V |
| 44 | 31, 43 | coex 4751 |
. . . . . . . 8
⊢ ( AddC ∘ ◡(1st ↾ (V × {n}))) ∈
V |
| 45 | 39, 44 | coex 4751 |
. . . . . . 7
⊢ (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ∈
V |
| 46 | 45 | fixex 5790 |
. . . . . 6
⊢ Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ∈
V |
| 47 | 30, 46 | eqeltrri 2424 |
. . . . 5
⊢ {x ∣ (x +c n) = (x
+c p)} ∈ V |
| 48 | 10, 14, 47 | vtocl2g 2919 |
. . . 4
⊢ ((N ∈ V ∧ P ∈ W) → {x
∣ (x
+c N) = (x +c P)} ∈
V) |
| 49 | | complexg 4100 |
. . . 4
⊢ ({x ∣ (x +c N) = (x
+c P)} ∈ V → ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V) |
| 50 | 48, 49 | syl 15 |
. . 3
⊢ ((N ∈ V ∧ P ∈ W) → ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V) |
| 51 | | abexv 4325 |
. . 3
⊢ {x ∣ N = P} ∈ V |
| 52 | | unexg 4102 |
. . 3
⊢ (( ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V ∧ {x ∣ N = P} ∈ V) → ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) ∈ V) |
| 53 | 50, 51, 52 | sylancl 643 |
. 2
⊢ ((N ∈ V ∧ P ∈ W) → ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) ∈ V) |
| 54 | 6, 53 | syl5eqelr 2438 |
1
⊢ ((N ∈ V ∧ P ∈ W) → {x
∣ ((x
+c N) = (x +c P) → N =
P)} ∈
V) |