| Step | Hyp | Ref
 | Expression | 
| 1 |   | unab 3522 | 
. . 3
⊢ ({x ∣ ¬
(x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
{x ∣
(¬ (x +c N) = (x
+c P)  ∨ N = P)} | 
| 2 |   | complab 3525 | 
. . . 4
⊢  ∼ {x ∣ (x +c N) = (x
+c P)} = {x ∣ ¬
(x +c N) = (x
+c P)} | 
| 3 | 2 | uneq1i 3415 | 
. . 3
⊢ ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
({x ∣
¬ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) | 
| 4 |   | imor 401 | 
. . . 4
⊢ (((x +c N) = (x
+c P) → N = P) ↔
(¬ (x +c N) = (x
+c P)  ∨ N = P)) | 
| 5 | 4 | abbii 2466 | 
. . 3
⊢ {x ∣ ((x +c N) = (x
+c P) → N = P)} =
{x ∣
(¬ (x +c N) = (x
+c P)  ∨ N = P)} | 
| 6 | 1, 3, 5 | 3eqtr4i 2383 | 
. 2
⊢ ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) =
{x ∣
((x +c N) = (x
+c P) → N = P)} | 
| 7 |   | addceq2 4385 | 
. . . . . . . 8
⊢ (n = N →
(x +c n) = (x
+c N)) | 
| 8 | 7 | eqeq1d 2361 | 
. . . . . . 7
⊢ (n = N →
((x +c n) = (x
+c p) ↔ (x +c N) = (x
+c p))) | 
| 9 | 8 | abbidv 2468 | 
. . . . . 6
⊢ (n = N →
{x ∣
(x +c n) = (x
+c p)} = {x ∣ (x +c N) = (x
+c p)}) | 
| 10 | 9 | eleq1d 2419 | 
. . . . 5
⊢ (n = N →
({x ∣
(x +c n) = (x
+c p)} ∈ V ↔ {x
∣ (x
+c N) = (x +c p)} ∈
V)) | 
| 11 |   | addceq2 4385 | 
. . . . . . . 8
⊢ (p = P →
(x +c p) = (x
+c P)) | 
| 12 | 11 | eqeq2d 2364 | 
. . . . . . 7
⊢ (p = P →
((x +c N) = (x
+c p) ↔ (x +c N) = (x
+c P))) | 
| 13 | 12 | abbidv 2468 | 
. . . . . 6
⊢ (p = P →
{x ∣
(x +c N) = (x
+c p)} = {x ∣ (x +c N) = (x
+c P)}) | 
| 14 | 13 | eleq1d 2419 | 
. . . . 5
⊢ (p = P →
({x ∣
(x +c N) = (x
+c p)} ∈ V ↔ {x
∣ (x
+c N) = (x +c P)} ∈
V)) | 
| 15 |   | elfix 5788 | 
. . . . . . . 8
⊢ (x ∈  Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ↔ x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x) | 
| 16 |   | brco 4884 | 
. . . . . . . . 9
⊢ (x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x ↔
∃y(x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x)) | 
| 17 |   | addccan2nclem1 6264 | 
. . . . . . . . . . 11
⊢ (x( AddC ∘ ◡(1st ↾ (V × {n})))y ↔
y = (x
+c n)) | 
| 18 |   | brcnv 4893 | 
. . . . . . . . . . . 12
⊢ (y◡( AddC ∘ ◡(1st ↾ (V × {p})))x ↔
x( AddC ∘ ◡(1st ↾ (V × {p})))y) | 
| 19 |   | addccan2nclem1 6264 | 
. . . . . . . . . . . 12
⊢ (x( AddC ∘ ◡(1st ↾ (V × {p})))y ↔
y = (x
+c p)) | 
| 20 | 18, 19 | bitri 240 | 
. . . . . . . . . . 11
⊢ (y◡( AddC ∘ ◡(1st ↾ (V × {p})))x ↔
y = (x
+c p)) | 
| 21 | 17, 20 | anbi12i 678 | 
. . . . . . . . . 10
⊢ ((x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x) ↔
(y = (x
+c n) ∧ y = (x +c p))) | 
| 22 | 21 | exbii 1582 | 
. . . . . . . . 9
⊢ (∃y(x( AddC ∘ ◡(1st ↾ (V × {n})))y ∧ y◡( AddC ∘ ◡(1st ↾ (V × {p})))x) ↔
∃y(y = (x +c n) ∧ y = (x
+c p))) | 
| 23 | 16, 22 | bitri 240 | 
. . . . . . . 8
⊢ (x(◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n}))))x ↔
∃y(y = (x +c n) ∧ y = (x
+c p))) | 
| 24 |   | vex 2863 | 
. . . . . . . . . 10
⊢ x ∈
V | 
| 25 |   | vex 2863 | 
. . . . . . . . . 10
⊢ n ∈
V | 
| 26 | 24, 25 | addcex 4395 | 
. . . . . . . . 9
⊢ (x +c n) ∈
V | 
| 27 |   | eqeq1 2359 | 
. . . . . . . . 9
⊢ (y = (x
+c n) → (y = (x
+c p) ↔ (x +c n) = (x
+c p))) | 
| 28 | 26, 27 | ceqsexv 2895 | 
. . . . . . . 8
⊢ (∃y(y = (x
+c n) ∧ y = (x +c p)) ↔ (x
+c n) = (x +c p)) | 
| 29 | 15, 23, 28 | 3bitri 262 | 
. . . . . . 7
⊢ (x ∈  Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ↔ (x
+c n) = (x +c p)) | 
| 30 | 29 | eqabi 2465 | 
. . . . . 6
⊢  Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) = {x
∣ (x
+c n) = (x +c p)} | 
| 31 |   | addcfnex 5825 | 
. . . . . . . . . 10
⊢  AddC ∈
V | 
| 32 |   | 1stex 4740 | 
. . . . . . . . . . . 12
⊢ 1st
∈ V | 
| 33 |   | vvex 4110 | 
. . . . . . . . . . . . 13
⊢ V ∈ V | 
| 34 |   | snex 4112 | 
. . . . . . . . . . . . 13
⊢ {p} ∈
V | 
| 35 | 33, 34 | xpex 5116 | 
. . . . . . . . . . . 12
⊢ (V ×
{p}) ∈
V | 
| 36 | 32, 35 | resex 5118 | 
. . . . . . . . . . 11
⊢ (1st
↾ (V × {p})) ∈
V | 
| 37 | 36 | cnvex 5103 | 
. . . . . . . . . 10
⊢ ◡(1st ↾ (V × {p})) ∈
V | 
| 38 | 31, 37 | coex 4751 | 
. . . . . . . . 9
⊢ ( AddC ∘ ◡(1st ↾ (V × {p}))) ∈
V | 
| 39 | 38 | cnvex 5103 | 
. . . . . . . 8
⊢ ◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∈
V | 
| 40 |   | snex 4112 | 
. . . . . . . . . . . 12
⊢ {n} ∈
V | 
| 41 | 33, 40 | xpex 5116 | 
. . . . . . . . . . 11
⊢ (V ×
{n}) ∈
V | 
| 42 | 32, 41 | resex 5118 | 
. . . . . . . . . 10
⊢ (1st
↾ (V × {n})) ∈
V | 
| 43 | 42 | cnvex 5103 | 
. . . . . . . . 9
⊢ ◡(1st ↾ (V × {n})) ∈
V | 
| 44 | 31, 43 | coex 4751 | 
. . . . . . . 8
⊢ ( AddC ∘ ◡(1st ↾ (V × {n}))) ∈
V | 
| 45 | 39, 44 | coex 4751 | 
. . . . . . 7
⊢ (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ∈
V | 
| 46 | 45 | fixex 5790 | 
. . . . . 6
⊢  Fix (◡( AddC ∘ ◡(1st ↾ (V × {p}))) ∘ ( AddC ∘ ◡(1st ↾ (V × {n})))) ∈
V | 
| 47 | 30, 46 | eqeltrri 2424 | 
. . . . 5
⊢ {x ∣ (x +c n) = (x
+c p)} ∈ V | 
| 48 | 10, 14, 47 | vtocl2g 2919 | 
. . . 4
⊢ ((N ∈ V ∧ P ∈ W) → {x
∣ (x
+c N) = (x +c P)} ∈
V) | 
| 49 |   | complexg 4100 | 
. . . 4
⊢ ({x ∣ (x +c N) = (x
+c P)} ∈ V → ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V) | 
| 50 | 48, 49 | syl 15 | 
. . 3
⊢ ((N ∈ V ∧ P ∈ W) → ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V) | 
| 51 |   | abexv 4325 | 
. . 3
⊢ {x ∣ N = P} ∈ V | 
| 52 |   | unexg 4102 | 
. . 3
⊢ (( ∼ {x ∣ (x +c N) = (x
+c P)} ∈ V ∧ {x ∣ N = P} ∈ V) → ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) ∈ V) | 
| 53 | 50, 51, 52 | sylancl 643 | 
. 2
⊢ ((N ∈ V ∧ P ∈ W) → ( ∼ {x ∣ (x +c N) = (x
+c P)} ∪ {x ∣ N = P}) ∈ V) | 
| 54 | 6, 53 | syl5eqelr 2438 | 
1
⊢ ((N ∈ V ∧ P ∈ W) → {x
∣ ((x
+c N) = (x +c P) → N =
P)} ∈
V) |