New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0cminle | GIF version |
Description: Cardinal zero is a minimal element for finite less than or equal. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
0cminle | ⊢ (A ∈ Nn → ⟪0c, A⟫ ∈ ≤fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcid2 4408 | . . 3 ⊢ (0c +c A) = A | |
2 | 1 | opkeq2i 4064 | . 2 ⊢ ⟪0c, (0c +c A)⟫ = ⟪0c, A⟫ |
3 | peano1 4403 | . . 3 ⊢ 0c ∈ Nn | |
4 | lefinaddc 4451 | . . 3 ⊢ ((0c ∈ Nn ∧ A ∈ Nn ) → ⟪0c, (0c +c A)⟫ ∈ ≤fin ) | |
5 | 3, 4 | mpan 651 | . 2 ⊢ (A ∈ Nn → ⟪0c, (0c +c A)⟫ ∈ ≤fin ) |
6 | 2, 5 | syl5eqelr 2438 | 1 ⊢ (A ∈ Nn → ⟪0c, A⟫ ∈ ≤fin ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⟪copk 4058 Nn cnnc 4374 0cc0c 4375 +c cplc 4376 ≤fin clefin 4433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-0c 4378 df-addc 4379 df-nnc 4380 df-lefin 4441 |
This theorem is referenced by: ltfintri 4467 |
Copyright terms: Public domain | W3C validator |