NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nncaddccl GIF version

Theorem nncaddccl 4420
Description: The finite cardinals are closed under addition. Theorem X.1.14 of [Rosser] p. 278. (Contributed by SF, 17-Jan-2015.)
Assertion
Ref Expression
nncaddccl ((A Nn B Nn ) → (A +c B) Nn )

Proof of Theorem nncaddccl
Dummy variables a b c x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addceq1 4384 . . . . 5 (a = A → (a +c B) = (A +c B))
21eleq1d 2419 . . . 4 (a = A → ((a +c B) Nn ↔ (A +c B) Nn ))
32imbi2d 307 . . 3 (a = A → ((B Nn → (a +c B) Nn ) ↔ (B Nn → (A +c B) Nn )))
4 unab 3522 . . . . . . 7 ({b ¬ a Nn } ∪ {b (a +c b) Nn }) = {b a Nn (a +c b) Nn )}
5 vex 2863 . . . . . . . . . . . . 13 b V
6 vex 2863 . . . . . . . . . . . . 13 x V
7 opkelimagekg 4272 . . . . . . . . . . . . 13 ((b V x V) → (⟪b, x Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) ↔ x = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k b)))
85, 6, 7mp2an 653 . . . . . . . . . . . 12 (⟪b, x Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) ↔ x = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k b))
96, 5opkelcnvk 4251 . . . . . . . . . . . 12 (⟪x, b kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) ↔ ⟪b, x Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a))
10 addccom 4407 . . . . . . . . . . . . . 14 (a +c b) = (b +c a)
11 dfaddc2 4382 . . . . . . . . . . . . . 14 (b +c a) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k b)
1210, 11eqtri 2373 . . . . . . . . . . . . 13 (a +c b) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k b)
1312eqeq2i 2363 . . . . . . . . . . . 12 (x = (a +c b) ↔ x = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k b))
148, 9, 133bitr4i 268 . . . . . . . . . . 11 (⟪x, b kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) ↔ x = (a +c b))
1514rexbii 2640 . . . . . . . . . 10 (x Nnx, b kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) ↔ x Nn x = (a +c b))
165elimak 4260 . . . . . . . . . 10 (b (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn ) ↔ x Nnx, b kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a))
17 risset 2662 . . . . . . . . . 10 ((a +c b) Nnx Nn x = (a +c b))
1815, 16, 173bitr4i 268 . . . . . . . . 9 (b (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn ) ↔ (a +c b) Nn )
1918abbi2i 2465 . . . . . . . 8 (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn ) = {b (a +c b) Nn }
2019uneq2i 3416 . . . . . . 7 ({b ¬ a Nn } ∪ (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn )) = ({b ¬ a Nn } ∪ {b (a +c b) Nn })
21 imor 401 . . . . . . . 8 ((a Nn → (a +c b) Nn ) ↔ (¬ a Nn (a +c b) Nn ))
2221abbii 2466 . . . . . . 7 {b (a Nn → (a +c b) Nn )} = {b a Nn (a +c b) Nn )}
234, 20, 223eqtr4i 2383 . . . . . 6 ({b ¬ a Nn } ∪ (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn )) = {b (a Nn → (a +c b) Nn )}
24 abexv 4325 . . . . . . 7 {b ¬ a Nn } V
25 addcexlem 4383 . . . . . . . . . . 11 ( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) V
26 vex 2863 . . . . . . . . . . . . 13 a V
2726pw1ex 4304 . . . . . . . . . . . 12 1a V
2827pw1ex 4304 . . . . . . . . . . 11 11a V
2925, 28imakex 4301 . . . . . . . . . 10 (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) V
3029imagekex 4313 . . . . . . . . 9 Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) V
3130cnvkex 4288 . . . . . . . 8 kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) V
32 nncex 4397 . . . . . . . 8 Nn V
3331, 32imakex 4301 . . . . . . 7 (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn ) V
3424, 33unex 4107 . . . . . 6 ({b ¬ a Nn } ∪ (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11a) “k Nn )) V
3523, 34eqeltrri 2424 . . . . 5 {b (a Nn → (a +c b) Nn )} V
36 addceq2 4385 . . . . . . 7 (b = 0c → (a +c b) = (a +c 0c))
3736eleq1d 2419 . . . . . 6 (b = 0c → ((a +c b) Nn ↔ (a +c 0c) Nn ))
3837imbi2d 307 . . . . 5 (b = 0c → ((a Nn → (a +c b) Nn ) ↔ (a Nn → (a +c 0c) Nn )))
39 addceq2 4385 . . . . . . 7 (b = c → (a +c b) = (a +c c))
4039eleq1d 2419 . . . . . 6 (b = c → ((a +c b) Nn ↔ (a +c c) Nn ))
4140imbi2d 307 . . . . 5 (b = c → ((a Nn → (a +c b) Nn ) ↔ (a Nn → (a +c c) Nn )))
42 addceq2 4385 . . . . . . 7 (b = (c +c 1c) → (a +c b) = (a +c (c +c 1c)))
4342eleq1d 2419 . . . . . 6 (b = (c +c 1c) → ((a +c b) Nn ↔ (a +c (c +c 1c)) Nn ))
4443imbi2d 307 . . . . 5 (b = (c +c 1c) → ((a Nn → (a +c b) Nn ) ↔ (a Nn → (a +c (c +c 1c)) Nn )))
45 addceq2 4385 . . . . . . 7 (b = B → (a +c b) = (a +c B))
4645eleq1d 2419 . . . . . 6 (b = B → ((a +c b) Nn ↔ (a +c B) Nn ))
4746imbi2d 307 . . . . 5 (b = B → ((a Nn → (a +c b) Nn ) ↔ (a Nn → (a +c B) Nn )))
48 addcid1 4406 . . . . . 6 (a +c 0c) = a
49 id 19 . . . . . 6 (a Nna Nn )
5048, 49syl5eqel 2437 . . . . 5 (a Nn → (a +c 0c) Nn )
51 addcass 4416 . . . . . . . 8 ((a +c c) +c 1c) = (a +c (c +c 1c))
52 peano2 4404 . . . . . . . 8 ((a +c c) Nn → ((a +c c) +c 1c) Nn )
5351, 52syl5eqelr 2438 . . . . . . 7 ((a +c c) Nn → (a +c (c +c 1c)) Nn )
5453imim2i 13 . . . . . 6 ((a Nn → (a +c c) Nn ) → (a Nn → (a +c (c +c 1c)) Nn ))
5554a1i 10 . . . . 5 (c Nn → ((a Nn → (a +c c) Nn ) → (a Nn → (a +c (c +c 1c)) Nn )))
5635, 38, 41, 44, 47, 50, 55finds 4412 . . . 4 (B Nn → (a Nn → (a +c B) Nn ))
5756com12 27 . . 3 (a Nn → (B Nn → (a +c B) Nn ))
583, 57vtoclga 2921 . 2 (A Nn → (B Nn → (A +c B) Nn ))
5958imp 418 1 ((A Nn B Nn ) → (A +c B) Nn )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  copk 4058  1cc1c 4135  1cpw1 4136  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Nn cnnc 4374  0cc0c 4375   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-0c 4378  df-addc 4379  df-nnc 4380
This theorem is referenced by:  preaddccan2  4456  leltfintr  4459  ltfintr  4460  ncfindi  4476  tfindi  4497  tfinltfinlem1  4501  evennn  4507  oddnn  4508  evenodddisj  4517  eventfin  4518  oddtfin  4519  nnpweq  4524  sfindbl  4531  sfinltfin  4536  addccan2  4560  nnc3n3p1  6279  nnc3n3p2  6280  nnc3p1n3p2  6281  nchoicelem1  6290  nchoicelem2  6291
  Copyright terms: Public domain W3C validator