Step | Hyp | Ref
| Expression |
1 | | addceq1 4384 |
. . . . 5
⊢ (a = A →
(a +c B) = (A
+c B)) |
2 | 1 | eleq1d 2419 |
. . . 4
⊢ (a = A →
((a +c B) ∈ Nn ↔ (A
+c B) ∈ Nn
)) |
3 | 2 | imbi2d 307 |
. . 3
⊢ (a = A →
((B ∈
Nn → (a
+c B) ∈ Nn ) ↔
(B ∈
Nn → (A
+c B) ∈ Nn
))) |
4 | | unab 3522 |
. . . . . . 7
⊢ ({b ∣ ¬
a ∈ Nn } ∪ {b ∣ (a
+c b) ∈ Nn }) = {b ∣ (¬
a ∈ Nn ∨ (a +c b) ∈ Nn )} |
5 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ b ∈
V |
6 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
7 | | opkelimagekg 4272 |
. . . . . . . . . . . . 13
⊢ ((b ∈ V ∧ x ∈ V) → (⟪b, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ↔ x =
((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k b))) |
8 | 5, 6, 7 | mp2an 653 |
. . . . . . . . . . . 12
⊢ (⟪b, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ↔ x =
((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k b)) |
9 | 6, 5 | opkelcnvk 4251 |
. . . . . . . . . . . 12
⊢ (⟪x, b⟫
∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ↔ ⟪b, x⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a)) |
10 | | addccom 4407 |
. . . . . . . . . . . . . 14
⊢ (a +c b) = (b
+c a) |
11 | | dfaddc2 4382 |
. . . . . . . . . . . . . 14
⊢ (b +c a) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k b) |
12 | 10, 11 | eqtri 2373 |
. . . . . . . . . . . . 13
⊢ (a +c b) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k b) |
13 | 12 | eqeq2i 2363 |
. . . . . . . . . . . 12
⊢ (x = (a
+c b) ↔ x = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k b)) |
14 | 8, 9, 13 | 3bitr4i 268 |
. . . . . . . . . . 11
⊢ (⟪x, b⟫
∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ↔ x =
(a +c b)) |
15 | 14 | rexbii 2640 |
. . . . . . . . . 10
⊢ (∃x ∈ Nn ⟪x, b⟫
∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ↔ ∃x ∈ Nn x = (a
+c b)) |
16 | 5 | elimak 4260 |
. . . . . . . . . 10
⊢ (b ∈ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn ) ↔ ∃x ∈ Nn ⟪x,
b⟫ ∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a)) |
17 | | risset 2662 |
. . . . . . . . . 10
⊢ ((a +c b) ∈ Nn ↔ ∃x ∈ Nn x = (a +c b)) |
18 | 15, 16, 17 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (b ∈ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn ) ↔ (a
+c b) ∈ Nn ) |
19 | 18 | abbi2i 2465 |
. . . . . . . 8
⊢ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn ) = {b ∣ (a
+c b) ∈ Nn } |
20 | 19 | uneq2i 3416 |
. . . . . . 7
⊢ ({b ∣ ¬
a ∈ Nn } ∪ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn )) = ({b ∣ ¬ a ∈ Nn } ∪ {b ∣ (a +c b) ∈ Nn }) |
21 | | imor 401 |
. . . . . . . 8
⊢ ((a ∈ Nn → (a
+c b) ∈ Nn ) ↔ (¬
a ∈ Nn ∨ (a +c b) ∈ Nn )) |
22 | 21 | abbii 2466 |
. . . . . . 7
⊢ {b ∣ (a ∈ Nn → (a
+c b) ∈ Nn )} = {b ∣ (¬
a ∈ Nn ∨ (a +c b) ∈ Nn )} |
23 | 4, 20, 22 | 3eqtr4i 2383 |
. . . . . 6
⊢ ({b ∣ ¬
a ∈ Nn } ∪ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn )) = {b ∣ (a ∈ Nn → (a +c b) ∈ Nn )} |
24 | | abexv 4325 |
. . . . . . 7
⊢ {b ∣ ¬
a ∈ Nn } ∈
V |
25 | | addcexlem 4383 |
. . . . . . . . . . 11
⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
26 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ a ∈
V |
27 | 26 | pw1ex 4304 |
. . . . . . . . . . . 12
⊢ ℘1a ∈
V |
28 | 27 | pw1ex 4304 |
. . . . . . . . . . 11
⊢ ℘1℘1a ∈
V |
29 | 25, 28 | imakex 4301 |
. . . . . . . . . 10
⊢ (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ∈
V |
30 | 29 | imagekex 4313 |
. . . . . . . . 9
⊢
Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ∈
V |
31 | 30 | cnvkex 4288 |
. . . . . . . 8
⊢ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) ∈
V |
32 | | nncex 4397 |
. . . . . . . 8
⊢ Nn ∈
V |
33 | 31, 32 | imakex 4301 |
. . . . . . 7
⊢ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn ) ∈
V |
34 | 24, 33 | unex 4107 |
. . . . . 6
⊢ ({b ∣ ¬
a ∈ Nn } ∪ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘1a) “k Nn )) ∈
V |
35 | 23, 34 | eqeltrri 2424 |
. . . . 5
⊢ {b ∣ (a ∈ Nn → (a
+c b) ∈ Nn )} ∈ V |
36 | | addceq2 4385 |
. . . . . . 7
⊢ (b = 0c → (a +c b) = (a
+c 0c)) |
37 | 36 | eleq1d 2419 |
. . . . . 6
⊢ (b = 0c → ((a +c b) ∈ Nn ↔ (a
+c 0c) ∈
Nn )) |
38 | 37 | imbi2d 307 |
. . . . 5
⊢ (b = 0c → ((a ∈ Nn → (a
+c b) ∈ Nn ) ↔
(a ∈
Nn → (a
+c 0c) ∈
Nn ))) |
39 | | addceq2 4385 |
. . . . . . 7
⊢ (b = c →
(a +c b) = (a
+c c)) |
40 | 39 | eleq1d 2419 |
. . . . . 6
⊢ (b = c →
((a +c b) ∈ Nn ↔ (a
+c c) ∈ Nn
)) |
41 | 40 | imbi2d 307 |
. . . . 5
⊢ (b = c →
((a ∈
Nn → (a
+c b) ∈ Nn ) ↔
(a ∈
Nn → (a
+c c) ∈ Nn
))) |
42 | | addceq2 4385 |
. . . . . . 7
⊢ (b = (c
+c 1c) → (a +c b) = (a
+c (c
+c 1c))) |
43 | 42 | eleq1d 2419 |
. . . . . 6
⊢ (b = (c
+c 1c) → ((a +c b) ∈ Nn ↔ (a
+c (c
+c 1c)) ∈
Nn )) |
44 | 43 | imbi2d 307 |
. . . . 5
⊢ (b = (c
+c 1c) → ((a ∈ Nn → (a
+c b) ∈ Nn ) ↔
(a ∈
Nn → (a
+c (c
+c 1c)) ∈
Nn ))) |
45 | | addceq2 4385 |
. . . . . . 7
⊢ (b = B →
(a +c b) = (a
+c B)) |
46 | 45 | eleq1d 2419 |
. . . . . 6
⊢ (b = B →
((a +c b) ∈ Nn ↔ (a
+c B) ∈ Nn
)) |
47 | 46 | imbi2d 307 |
. . . . 5
⊢ (b = B →
((a ∈
Nn → (a
+c b) ∈ Nn ) ↔
(a ∈
Nn → (a
+c B) ∈ Nn
))) |
48 | | addcid1 4406 |
. . . . . 6
⊢ (a +c 0c) =
a |
49 | | id 19 |
. . . . . 6
⊢ (a ∈ Nn → a ∈ Nn
) |
50 | 48, 49 | syl5eqel 2437 |
. . . . 5
⊢ (a ∈ Nn → (a
+c 0c) ∈
Nn ) |
51 | | addcass 4416 |
. . . . . . . 8
⊢ ((a +c c) +c 1c) =
(a +c (c +c
1c)) |
52 | | peano2 4404 |
. . . . . . . 8
⊢ ((a +c c) ∈ Nn → ((a
+c c)
+c 1c) ∈
Nn ) |
53 | 51, 52 | syl5eqelr 2438 |
. . . . . . 7
⊢ ((a +c c) ∈ Nn → (a
+c (c
+c 1c)) ∈
Nn ) |
54 | 53 | imim2i 13 |
. . . . . 6
⊢ ((a ∈ Nn → (a
+c c) ∈ Nn ) →
(a ∈
Nn → (a
+c (c
+c 1c)) ∈
Nn )) |
55 | 54 | a1i 10 |
. . . . 5
⊢ (c ∈ Nn → ((a ∈ Nn → (a +c c) ∈ Nn ) → (a ∈ Nn → (a +c (c +c 1c)) ∈ Nn
))) |
56 | 35, 38, 41, 44, 47, 50, 55 | finds 4412 |
. . . 4
⊢ (B ∈ Nn → (a ∈ Nn → (a +c B) ∈ Nn )) |
57 | 56 | com12 27 |
. . 3
⊢ (a ∈ Nn → (B ∈ Nn → (a +c B) ∈ Nn )) |
58 | 3, 57 | vtoclga 2921 |
. 2
⊢ (A ∈ Nn → (B ∈ Nn → (A +c B) ∈ Nn )) |
59 | 58 | imp 418 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (A
+c B) ∈ Nn
) |