NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylancl GIF version

Theorem sylancl 643
Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sylancl.1 (φψ)
sylancl.2 χ
sylancl.3 ((ψ χ) → θ)
Assertion
Ref Expression
sylancl (φθ)

Proof of Theorem sylancl
StepHypRef Expression
1 sylancl.1 . 2 (φψ)
2 sylancl.2 . . 3 χ
32a1i 10 . 2 (φχ)
4 sylancl.3 . 2 ((ψ χ) → θ)
51, 3, 4syl2anc 642 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  equveli  1988  syl5sseq  3320  ssdifin0  3632  uneqdifeq  3639  unimax  3926  pw1exg  4303  cokexg  4310  pwexg  4329  nnsucelr  4429  vfinspnn  4542  isoini2  5499  fullfunexg  5860  qsexg  5983  mapsn  6027  enrflxg  6035  cnven  6046  ncdisjun  6137  addccan2nclem2  6265  nncdiv3  6278  nnc3n3p1  6279  nnc3n3p2  6280  nchoicelem1  6290  nchoicelem2  6291  nchoicelem12  6301  frec0  6322
  Copyright terms: Public domain W3C validator