New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylancl | GIF version |
Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sylancl.1 | ⊢ (φ → ψ) |
sylancl.2 | ⊢ χ |
sylancl.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylancl | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancl.1 | . 2 ⊢ (φ → ψ) | |
2 | sylancl.2 | . . 3 ⊢ χ | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → χ) |
4 | sylancl.3 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
5 | 1, 3, 4 | syl2anc 642 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: equveli 1988 syl5sseq 3320 ssdifin0 3632 uneqdifeq 3639 unimax 3926 pw1exg 4303 cokexg 4310 pwexg 4329 nnsucelr 4429 vfinspnn 4542 isoini2 5499 fullfunexg 5860 qsexg 5983 mapsn 6027 enrflxg 6035 cnven 6046 ncdisjun 6137 addccan2nclem2 6265 nncdiv3 6278 nnc3n3p1 6279 nnc3n3p2 6280 nchoicelem1 6290 nchoicelem2 6291 nchoicelem12 6301 frec0 6322 |
Copyright terms: Public domain | W3C validator |