NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw1exg GIF version

Theorem pw1exg 4303
Description: The unit power class preserves sethood. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
pw1exg (A V1A V)

Proof of Theorem pw1exg
StepHypRef Expression
1 dfpw12 4302 . 2 1A = ( SIk (A ×k A) “k V)
2 xpkexg 4289 . . . . 5 ((A V A V) → (A ×k A) V)
32anidms 626 . . . 4 (A V → (A ×k A) V)
4 sikexg 4297 . . . 4 ((A ×k A) V → SIk (A ×k A) V)
53, 4syl 15 . . 3 (A VSIk (A ×k A) V)
6 vvex 4110 . . 3 V V
7 imakexg 4300 . . 3 (( SIk (A ×k A) V V V) → ( SIk (A ×k A) “k V) V)
85, 6, 7sylancl 643 . 2 (A V → ( SIk (A ×k A) “k V) V)
91, 8syl5eqel 2437 1 (A V1A V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  Vcvv 2860  1cpw1 4136   ×k cxpk 4175  k cimak 4180   SIk csik 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193
This theorem is referenced by:  pw1ex  4304  pw1exb  4327  pwexg  4329  addcexg  4394  ncfintfin  4496  imaexg  4747  coexg  4750  siexg  4753  qsexg  5983  pw1eltc  6163  ncpw1pwneg  6202  ltcpw1pwg  6203  tcncg  6225  canncb  6333
  Copyright terms: Public domain W3C validator