New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw1exg | GIF version |
Description: The unit power class preserves sethood. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
pw1exg | ⊢ (A ∈ V → ℘1A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpw12 4301 | . 2 ⊢ ℘1A = ( SIk (A ×k A) “k V) | |
2 | xpkexg 4288 | . . . . 5 ⊢ ((A ∈ V ∧ A ∈ V) → (A ×k A) ∈ V) | |
3 | 2 | anidms 626 | . . . 4 ⊢ (A ∈ V → (A ×k A) ∈ V) |
4 | sikexg 4296 | . . . 4 ⊢ ((A ×k A) ∈ V → SIk (A ×k A) ∈ V) | |
5 | 3, 4 | syl 15 | . . 3 ⊢ (A ∈ V → SIk (A ×k A) ∈ V) |
6 | vvex 4109 | . . 3 ⊢ V ∈ V | |
7 | imakexg 4299 | . . 3 ⊢ (( SIk (A ×k A) ∈ V ∧ V ∈ V) → ( SIk (A ×k A) “k V) ∈ V) | |
8 | 5, 6, 7 | sylancl 643 | . 2 ⊢ (A ∈ V → ( SIk (A ×k A) “k V) ∈ V) |
9 | 1, 8 | syl5eqel 2437 | 1 ⊢ (A ∈ V → ℘1A ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 Vcvv 2859 ℘1cpw1 4135 ×k cxpk 4174 “k cimak 4179 SIk csik 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-si 4083 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-xpk 4185 df-cnvk 4186 df-imak 4189 df-p6 4191 df-sik 4192 |
This theorem is referenced by: pw1ex 4303 pw1exb 4326 pwexg 4328 addcexg 4393 ncfintfin 4495 imaexg 4746 coexg 4749 siexg 4752 qsexg 5982 pw1eltc 6162 ncpw1pwneg 6201 ltcpw1pwg 6202 tcncg 6224 canncb 6332 |
Copyright terms: Public domain | W3C validator |