| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > uniprg | GIF version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
| Ref | Expression |
|---|---|
| uniprg | ⊢ ((A ∈ V ∧ B ∈ W) → ∪{A, B} = (A ∪ B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3800 | . . . 4 ⊢ (x = A → {x, y} = {A, y}) | |
| 2 | 1 | unieqd 3903 | . . 3 ⊢ (x = A → ∪{x, y} = ∪{A, y}) |
| 3 | uneq1 3412 | . . 3 ⊢ (x = A → (x ∪ y) = (A ∪ y)) | |
| 4 | 2, 3 | eqeq12d 2367 | . 2 ⊢ (x = A → (∪{x, y} = (x ∪ y) ↔ ∪{A, y} = (A ∪ y))) |
| 5 | preq2 3801 | . . . 4 ⊢ (y = B → {A, y} = {A, B}) | |
| 6 | 5 | unieqd 3903 | . . 3 ⊢ (y = B → ∪{A, y} = ∪{A, B}) |
| 7 | uneq2 3413 | . . 3 ⊢ (y = B → (A ∪ y) = (A ∪ B)) | |
| 8 | 6, 7 | eqeq12d 2367 | . 2 ⊢ (y = B → (∪{A, y} = (A ∪ y) ↔ ∪{A, B} = (A ∪ B))) |
| 9 | vex 2863 | . . 3 ⊢ x ∈ V | |
| 10 | vex 2863 | . . 3 ⊢ y ∈ V | |
| 11 | 9, 10 | unipr 3906 | . 2 ⊢ ∪{x, y} = (x ∪ y) |
| 12 | 4, 8, 11 | vtocl2g 2919 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → ∪{A, B} = (A ∪ B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 {cpr 3739 ∪cuni 3892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |