QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u4lemana GIF version

Theorem u4lemana 608
Description: Lemma for non-tollens implication study. (Contributed by NM, 14-Dec-1997.)
Assertion
Ref Expression
u4lemana ((a4 b) ∩ a ) = ((ab) ∪ (ab ))

Proof of Theorem u4lemana
StepHypRef Expression
1 df-i4 47 . . 3 (a4 b) = (((ab) ∪ (ab)) ∪ ((ab) ∩ b ))
21ran 78 . 2 ((a4 b) ∩ a ) = ((((ab) ∪ (ab)) ∪ ((ab) ∩ b )) ∩ a )
3 comanr1 464 . . . . . . 7 a C (ab)
43comcom3 454 . . . . . 6 a C (ab)
5 comanr1 464 . . . . . 6 a C (ab)
64, 5com2or 483 . . . . 5 a C ((ab) ∪ (ab))
76comcom 453 . . . 4 ((ab) ∪ (ab)) C a
8 comor1 461 . . . . . . . . 9 (ab) C a
98comcom7 460 . . . . . . . 8 (ab) C a
10 comor2 462 . . . . . . . 8 (ab) C b
119, 10com2an 484 . . . . . . 7 (ab) C (ab)
128, 10com2an 484 . . . . . . 7 (ab) C (ab)
1311, 12com2or 483 . . . . . 6 (ab) C ((ab) ∪ (ab))
1413comcom 453 . . . . 5 ((ab) ∪ (ab)) C (ab)
15 comanr2 465 . . . . . . . 8 b C (ab)
1615comcom3 454 . . . . . . 7 b C (ab)
17 comanr2 465 . . . . . . . 8 b C (ab)
1817comcom3 454 . . . . . . 7 b C (ab)
1916, 18com2or 483 . . . . . 6 b C ((ab) ∪ (ab))
2019comcom 453 . . . . 5 ((ab) ∪ (ab)) C b
2114, 20com2an 484 . . . 4 ((ab) ∪ (ab)) C ((ab) ∩ b )
227, 21fh2r 474 . . 3 ((((ab) ∪ (ab)) ∪ ((ab) ∩ b )) ∩ a ) = ((((ab) ∪ (ab)) ∩ a ) ∪ (((ab) ∩ b ) ∩ a ))
234, 5fh1r 473 . . . . . 6 (((ab) ∪ (ab)) ∩ a ) = (((ab) ∩ a ) ∪ ((ab) ∩ a ))
24 an32 83 . . . . . . . . 9 ((ab) ∩ a ) = ((aa ) ∩ b)
25 ancom 74 . . . . . . . . . 10 ((aa ) ∩ b) = (b ∩ (aa ))
26 dff 101 . . . . . . . . . . . . 13 0 = (aa )
2726ax-r1 35 . . . . . . . . . . . 12 (aa ) = 0
2827lan 77 . . . . . . . . . . 11 (b ∩ (aa )) = (b ∩ 0)
29 an0 108 . . . . . . . . . . 11 (b ∩ 0) = 0
3028, 29ax-r2 36 . . . . . . . . . 10 (b ∩ (aa )) = 0
3125, 30ax-r2 36 . . . . . . . . 9 ((aa ) ∩ b) = 0
3224, 31ax-r2 36 . . . . . . . 8 ((ab) ∩ a ) = 0
33 an32 83 . . . . . . . . 9 ((ab) ∩ a ) = ((aa ) ∩ b)
34 anidm 111 . . . . . . . . . 10 (aa ) = a
3534ran 78 . . . . . . . . 9 ((aa ) ∩ b) = (ab)
3633, 35ax-r2 36 . . . . . . . 8 ((ab) ∩ a ) = (ab)
3732, 362or 72 . . . . . . 7 (((ab) ∩ a ) ∪ ((ab) ∩ a )) = (0 ∪ (ab))
38 ax-a2 31 . . . . . . . 8 (0 ∪ (ab)) = ((ab) ∪ 0)
39 or0 102 . . . . . . . 8 ((ab) ∪ 0) = (ab)
4038, 39ax-r2 36 . . . . . . 7 (0 ∪ (ab)) = (ab)
4137, 40ax-r2 36 . . . . . 6 (((ab) ∩ a ) ∪ ((ab) ∩ a )) = (ab)
4223, 41ax-r2 36 . . . . 5 (((ab) ∪ (ab)) ∩ a ) = (ab)
43 an32 83 . . . . . 6 (((ab) ∩ b ) ∩ a ) = (((ab) ∩ a ) ∩ b )
44 ancom 74 . . . . . . . 8 ((ab) ∩ a ) = (a ∩ (ab))
45 leo 158 . . . . . . . . 9 a ≤ (ab)
4645df2le2 136 . . . . . . . 8 (a ∩ (ab)) = a
4744, 46ax-r2 36 . . . . . . 7 ((ab) ∩ a ) = a
4847ran 78 . . . . . 6 (((ab) ∩ a ) ∩ b ) = (ab )
4943, 48ax-r2 36 . . . . 5 (((ab) ∩ b ) ∩ a ) = (ab )
5042, 492or 72 . . . 4 ((((ab) ∪ (ab)) ∩ a ) ∪ (((ab) ∩ b ) ∩ a )) = ((ab) ∪ (ab ))
51 id 59 . . . 4 ((ab) ∪ (ab )) = ((ab) ∪ (ab ))
5250, 51ax-r2 36 . . 3 ((((ab) ∪ (ab)) ∩ a ) ∪ (((ab) ∩ b ) ∩ a )) = ((ab) ∪ (ab ))
5322, 52ax-r2 36 . 2 ((((ab) ∪ (ab)) ∪ ((ab) ∩ b )) ∩ a ) = ((ab) ∪ (ab ))
542, 53ax-r2 36 1 ((a4 b) ∩ a ) = ((ab) ∪ (ab ))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  0wf 9  4 wi4 15
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i4 47  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u4lemnoa  663  u4lem5  764
  Copyright terms: Public domain W3C validator