ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq Unicode version

Theorem ltexnqq 6564
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltexnqq
Dummy variables  f  g  h  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6504 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3795 . . . 4  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v
>. ]  ~Q  <->  A  <Q  [
<. w ,  v >. ]  ~Q  ) )
3 oveq1 5547 . . . . . 6  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( [ <. y ,  z >. ]  ~Q  +Q  x )  =  ( A  +Q  x ) )
43eqeq1d 2064 . . . . 5  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
54rexbidv 2344 . . . 4  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( E. x  e. 
Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  E. x  e.  Q.  ( A  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
62, 5imbi12d 227 . . 3  |-  ( [
<. y ,  z >. ]  ~Q  =  A  -> 
( ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  )  <->  ( A  <Q  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) ) )
7 breq2 3796 . . . 4  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. w ,  v >. ]  ~Q  <->  A 
<Q  B ) )
8 eqeq2 2065 . . . . 5  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( A  +Q  x )  =  B ) )
98rexbidv 2344 . . . 4  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( E. x  e. 
Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  E. x  e.  Q.  ( A  +Q  x
)  =  B ) )
107, 9imbi12d 227 . . 3  |-  ( [
<. w ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. w ,  v >. ]  ~Q  ->  E. x  e.  Q.  ( A  +Q  x )  =  [ <. w ,  v >. ]  ~Q  )  <->  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B ) ) )
11 ordpipqqs 6530 . . . 4  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v >. ]  ~Q  <->  ( y  .N  v ) 
<N  ( z  .N  w
) ) )
12 mulclpi 6484 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  v  e.  N. )  ->  ( y  .N  v
)  e.  N. )
13 mulclpi 6484 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  w
)  e.  N. )
1412, 13anim12i 325 . . . . . . . 8  |-  ( ( ( y  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
y  .N  v )  e.  N.  /\  (
z  .N  w )  e.  N. ) )
1514an42s 531 . . . . . . 7  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v )  e.  N.  /\  (
z  .N  w )  e.  N. ) )
16 ltexpi 6493 . . . . . . 7  |-  ( ( ( y  .N  v
)  e.  N.  /\  ( z  .N  w
)  e.  N. )  ->  ( ( y  .N  v )  <N  (
z  .N  w )  <->  E. u  e.  N.  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
1715, 16syl 14 . . . . . 6  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  <->  E. u  e.  N.  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
18 df-rex 2329 . . . . . 6  |-  ( E. u  e.  N.  (
( y  .N  v
)  +N  u )  =  ( z  .N  w )  <->  E. u
( u  e.  N.  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
1917, 18syl6bb 189 . . . . 5  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  <->  E. u ( u  e.  N.  /\  (
( y  .N  v
)  +N  u )  =  ( z  .N  w ) ) ) )
20 simpll 489 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( y  e.  N.  /\  z  e.  N. ) )
21 simpr 107 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  u  e. 
N. )
22 simpr 107 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  z  e.  N. )
23 simpr 107 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  v  e.  N. )
2422, 23anim12i 325 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  v  e. 
N. ) )
2524adantr 265 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  e.  N.  /\  v  e.  N. ) )
26 mulclpi 6484 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
2725, 26syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  .N  v )  e. 
N. )
2820, 21, 27jca32 297 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( ( y  e.  N.  /\  z  e.  N. )  /\  ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )
) )
2928adantrr 456 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  e. 
N.  /\  z  e.  N. )  /\  (
u  e.  N.  /\  ( z  .N  v
)  e.  N. )
) )
30 addpipqqs 6526 . . . . . . . . . 10  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  =  [ <. (
( y  .N  (
z  .N  v ) )  +N  ( z  .N  u ) ) ,  ( z  .N  ( z  .N  v
) ) >. ]  ~Q  )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  )
32 simplll 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
y  e.  N. )
33 simpllr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
z  e.  N. )
34 simplrr 496 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
v  e.  N. )
35 mulcompig 6487 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
3635adantl 266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  ( f  e.  N.  /\  g  e.  N. )
)  ->  ( f  .N  g )  =  ( g  .N  f ) )
37 mulasspig 6488 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3837adantl 266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )
)  ->  ( (
f  .N  g )  .N  h )  =  ( f  .N  (
g  .N  h ) ) )
3932, 33, 34, 36, 38caov12d 5710 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( y  .N  (
z  .N  v ) )  =  ( z  .N  ( y  .N  v ) ) )
4039oveq1d 5555 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4132, 34, 12syl2anc 397 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( y  .N  v
)  e.  N. )
42 simprl 491 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  u  e.  N. )
43 distrpig 6489 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  ( y  .N  v
)  e.  N.  /\  u  e.  N. )  ->  ( z  .N  (
( y  .N  v
)  +N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4433, 41, 42, 43syl3anc 1146 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  .N  (
( y  .N  v
)  +N  u ) )  =  ( ( z  .N  ( y  .N  v ) )  +N  ( z  .N  u ) ) )
4540, 44eqtr4d 2091 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) )  =  ( z  .N  ( ( y  .N  v )  +N  u ) ) )
4645opeq1d 3583 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  <. ( ( y  .N  ( z  .N  v
) )  +N  (
z  .N  u ) ) ,  ( z  .N  ( z  .N  v ) ) >.  =  <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. )
4746eceq1d 6173 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( z  .N  (
( y  .N  v
)  +N  u ) ) ,  ( z  .N  ( z  .N  v ) ) >. ]  ~Q  )
48 simpllr 494 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  z  e. 
N. )
4912ad2ant2rl 488 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( y  .N  v )  e.  N. )
50 addclpi 6483 . . . . . . . . . . . . . 14  |-  ( ( ( y  .N  v
)  e.  N.  /\  u  e.  N. )  ->  ( ( y  .N  v )  +N  u
)  e.  N. )
5149, 50sylan 271 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( ( y  .N  v )  +N  u )  e. 
N. )
5248, 51, 273jca 1095 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  u  e.  N. )  ->  ( z  e.  N.  /\  (
( y  .N  v
)  +N  u )  e.  N.  /\  (
z  .N  v )  e.  N. ) )
5352adantrr 456 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  e.  N.  /\  ( ( y  .N  v )  +N  u
)  e.  N.  /\  ( z  .N  v
)  e.  N. )
)
54 mulcanenqec 6542 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  ( ( y  .N  v )  +N  u
)  e.  N.  /\  ( z  .N  v
)  e.  N. )  ->  [ <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
5553, 54syl 14 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( z  .N  ( ( y  .N  v )  +N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
5647, 55eqtrd 2088 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  ( z  .N  v ) )  +N  ( z  .N  u
) ) ,  ( z  .N  ( z  .N  v ) )
>. ]  ~Q  =  [ <. ( ( y  .N  v )  +N  u
) ,  ( z  .N  v ) >. ]  ~Q  )
57 3anass 900 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  <->  ( z  e.  N.  /\  ( w  e.  N.  /\  v  e.  N. ) ) )
5857biimpri 128 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N.  /\  v  e.  N. ) )
5958adantll 453 . . . . . . . . . . . 12  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N.  /\  v  e.  N. ) )
6059anim1i 327 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( (
y  .N  v )  +N  u )  =  ( z  .N  w
) )  ->  (
( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) ) )
6160adantrl 455 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( z  e. 
N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w ) ) )
62 opeq1 3577 . . . . . . . . . . . 12  |-  ( ( ( y  .N  v
)  +N  u )  =  ( z  .N  w )  ->  <. (
( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >.  =  <. ( z  .N  w ) ,  ( z  .N  v ) >. )
6362eceq1d 6173 . . . . . . . . . . 11  |-  ( ( ( y  .N  v
)  +N  u )  =  ( z  .N  w )  ->  [ <. ( ( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. ( z  .N  w ) ,  ( z  .N  v )
>. ]  ~Q  )
64 mulcanenqec 6542 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  ->  [ <. ( z  .N  w ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. w ,  v
>. ]  ~Q  )
6563, 64sylan9eqr 2110 . . . . . . . . . 10  |-  ( ( ( z  e.  N.  /\  w  e.  N.  /\  v  e.  N. )  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) )  ->  [ <. (
( y  .N  v
)  +N  u ) ,  ( z  .N  v ) >. ]  ~Q  =  [ <. w ,  v
>. ]  ~Q  )
6661, 65syl 14 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. ( ( y  .N  v )  +N  u ) ,  ( z  .N  v )
>. ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
6731, 56, 663eqtrd 2092 . . . . . . . 8  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  )
6833, 34, 26syl2anc 397 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( z  .N  v
)  e.  N. )
69 opelxpi 4404 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )  -> 
<. u ,  ( z  .N  v ) >.  e.  ( N.  X.  N. ) )
70 enqex 6516 . . . . . . . . . . . . 13  |-  ~Q  e.  _V
7170ecelqsi 6191 . . . . . . . . . . . 12  |-  ( <.
u ,  ( z  .N  v ) >.  e.  ( N.  X.  N. )  ->  [ <. u ,  ( z  .N  v ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7269, 71syl 14 . . . . . . . . . . 11  |-  ( ( u  e.  N.  /\  ( z  .N  v
)  e.  N. )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
7342, 68, 72syl2anc 397 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
7473, 1syl6eleqr 2147 . . . . . . . . 9  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  [ <. u ,  ( z  .N  v )
>. ]  ~Q  e.  Q. )
75 oveq2 5548 . . . . . . . . . . 11  |-  ( x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ->  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  ( [ <. y ,  z
>. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ) )
7675eqeq1d 2064 . . . . . . . . . 10  |-  ( x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  ->  ( ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  ) )
7776adantl 266 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  /\  x  =  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  ->  ( ( [
<. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  <->  ( [ <. y ,  z
>. ]  ~Q  +Q  [ <. u ,  ( z  .N  v ) >. ]  ~Q  )  =  [ <. w ,  v >. ]  ~Q  ) )
7874, 77rspcedv 2677 . . . . . . . 8  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  -> 
( ( [ <. y ,  z >. ]  ~Q  +Q  [ <. u ,  ( z  .N  v )
>. ]  ~Q  )  =  [ <. w ,  v
>. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
7967, 78mpd 13 . . . . . . 7  |-  ( ( ( ( y  e. 
N.  /\  z  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( u  e.  N.  /\  ( ( y  .N  v )  +N  u )  =  ( z  .N  w
) ) )  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  )
8079ex 112 . . . . . 6  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
u  e.  N.  /\  ( ( y  .N  v )  +N  u
)  =  ( z  .N  w ) )  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
8180exlimdv 1716 . . . . 5  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( E. u ( u  e. 
N.  /\  ( (
y  .N  v )  +N  u )  =  ( z  .N  w
) )  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
8219, 81sylbid 143 . . . 4  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  v ) 
<N  ( z  .N  w
)  ->  E. x  e.  Q.  ( [ <. y ,  z >. ]  ~Q  +Q  x )  =  [ <. w ,  v >. ]  ~Q  ) )
8311, 82sylbid 143 . . 3  |-  ( ( ( y  e.  N.  /\  z  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. y ,  z >. ]  ~Q  <Q  [ <. w ,  v >. ]  ~Q  ->  E. x  e.  Q.  ( [ <. y ,  z
>. ]  ~Q  +Q  x
)  =  [ <. w ,  v >. ]  ~Q  ) )
841, 6, 10, 832ecoptocl 6225 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x
)  =  B ) )
85 ltaddnq 6563 . . . . 5  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  A  <Q  ( A  +Q  x ) )
86 breq2 3796 . . . . 5  |-  ( ( A  +Q  x )  =  B  ->  ( A  <Q  ( A  +Q  x )  <->  A  <Q  B ) )
8785, 86syl5ibcom 148 . . . 4  |-  ( ( A  e.  Q.  /\  x  e.  Q. )  ->  ( ( A  +Q  x )  =  B  ->  A  <Q  B ) )
8887rexlimdva 2450 . . 3  |-  ( A  e.  Q.  ->  ( E. x  e.  Q.  ( A  +Q  x
)  =  B  ->  A  <Q  B ) )
8988adantr 265 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
Q.  ( A  +Q  x )  =  B  ->  A  <Q  B ) )
9084, 89impbid 124 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259   E.wex 1397    e. wcel 1409   E.wrex 2324   <.cop 3406   class class class wbr 3792    X. cxp 4371  (class class class)co 5540   [cec 6135   /.cqs 6136   N.cnpi 6428    +N cpli 6429    .N cmi 6430    <N clti 6431    ~Q ceq 6435   Q.cnq 6436    +Q cplq 6438    <Q cltq 6441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-ltnqqs 6509
This theorem is referenced by:  ltexnqi  6565  addlocpr  6692  ltexprlemopl  6757  ltexprlemopu  6759  ltexprlemrl  6766  ltexprlemru  6768  cauappcvgprlemopl  6802  caucvgprlemopl  6825  caucvgprprlemopl  6853
  Copyright terms: Public domain W3C validator