ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumkj GIF version

Theorem seq3f1olemqsumkj 10271
Description: Lemma for seq3f1o 10277. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(𝐽𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemstep.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemstep.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemstep.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemnk (𝜑𝐾 ≠ (𝐽𝐾))
iseqf1olemqres.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqsumk.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemqsumkj (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝐽   𝑥,𝑄   𝜑,𝑥   𝑥, + ,𝑦,𝑧   𝑓,𝐺,𝑥   𝑓,𝐽,𝑦,𝑧   𝑦,𝐾,𝑧   𝑓,𝑀   𝑓,𝑁,𝑥   𝑥,𝑃,𝑦,𝑧   𝑄,𝑓,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑢   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑢,𝑓)   + (𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑢,𝑓)   𝐺(𝑦,𝑧,𝑢)   𝐾(𝑓)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem seq3f1olemqsumkj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.k . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 9806 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
4 iseqf1olemstep.j . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 f1ocnv 5380 . . . . . . . . . . 11 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
64, 5syl 14 . . . . . . . . . 10 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1of 5367 . . . . . . . . . 10 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
86, 7syl 14 . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
98, 1ffvelrnd 5556 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
10 elfzelz 9806 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
119, 10syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ ℤ)
12 peano2zm 9092 . . . . . . 7 ((𝐽𝐾) ∈ ℤ → ((𝐽𝐾) − 1) ∈ ℤ)
1311, 12syl 14 . . . . . 6 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
14 iseqf1o.4 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
15 iseqf1olemstep.const . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
16 iseqf1olemnk . . . . . . . 8 (𝜑𝐾 ≠ (𝐽𝐾))
1714, 1, 4, 15, 16iseqf1olemklt 10258 . . . . . . 7 (𝜑𝐾 < (𝐽𝐾))
18 zltlem1 9111 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
193, 11, 18syl2anc 408 . . . . . . 7 (𝜑 → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
2017, 19mpbid 146 . . . . . 6 (𝜑𝐾 ≤ ((𝐽𝐾) − 1))
21 eluz2 9332 . . . . . 6 (((𝐽𝐾) − 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((𝐽𝐾) − 1) ∈ ℤ ∧ 𝐾 ≤ ((𝐽𝐾) − 1)))
223, 13, 20, 21syl3anbrc 1165 . . . . 5 (𝜑 → ((𝐽𝐾) − 1) ∈ (ℤ𝐾))
23 1zzd 9081 . . . . 5 (𝜑 → 1 ∈ ℤ)
241adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ (𝑀...𝑁))
254adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 elfzel1 9805 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
271, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
2827adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℤ)
29 elfzel2 9804 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
301, 29syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
3130adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℤ)
32 elfzelz 9806 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ∈ ℤ)
3332adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℤ)
3433peano2zd 9176 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℤ)
3528, 31, 343jca 1161 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
3628zred 9173 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℝ)
3733zred 9173 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℝ)
3834zred 9173 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℝ)
393zred 9173 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
4039adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℝ)
41 elfzle1 9807 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
421, 41syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑀𝐾)
4342adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝐾)
44 elfzle1 9807 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝐾𝑣)
4544adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾𝑣)
4636, 40, 37, 43, 45letrd 7886 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝑣)
4737lep1d 8689 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ (𝑣 + 1))
4836, 37, 38, 46, 47letrd 7886 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ≤ (𝑣 + 1))
4911zred 9173 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ∈ ℝ)
5049adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℝ)
5131zred 9173 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℝ)
52 elfzle2 9808 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ≤ ((𝐽𝐾) − 1))
5352adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ ((𝐽𝐾) − 1))
54 1red 7781 . . . . . . . . . . . . . . 15 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 1 ∈ ℝ)
55 leaddsub 8200 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐽𝐾) ∈ ℝ) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5637, 54, 50, 55syl3anc 1216 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5753, 56mpbird 166 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ (𝐽𝐾))
58 elfzle2 9808 . . . . . . . . . . . . . . 15 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ≤ 𝑁)
599, 58syl 14 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ≤ 𝑁)
6059adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ≤ 𝑁)
6138, 50, 51, 57, 60letrd 7886 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ 𝑁)
6248, 61jca 304 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁))
63 elfz2 9797 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁)))
6435, 62, 63sylanbrc 413 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝑀...𝑁))
65 iseqf1olemqres.q . . . . . . . . . 10 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
6624, 25, 64, 65iseqf1olemqval 10260 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))))
6724, 2syl 14 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℤ)
6811adantr 274 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℤ)
6967, 68, 343jca 1161 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
7040, 37, 38, 45, 47letrd 7886 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ≤ (𝑣 + 1))
7170, 57jca 304 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾)))
72 elfz2 9797 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾))))
7369, 71, 72sylanbrc 413 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝐾...(𝐽𝐾)))
7473iftrued 3481 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
7566, 74eqtrd 2172 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
76 zleltp1 9109 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7767, 33, 76syl2anc 408 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7845, 77mpbid 146 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 < (𝑣 + 1))
7940, 78gtned 7876 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≠ 𝐾)
8079neneqd 2329 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ¬ (𝑣 + 1) = 𝐾)
8180iffalsed 3484 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))) = (𝐽‘((𝑣 + 1) − 1)))
8233zcnd 9174 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℂ)
83 pncan1 8139 . . . . . . . . . 10 (𝑣 ∈ ℂ → ((𝑣 + 1) − 1) = 𝑣)
8482, 83syl 14 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) − 1) = 𝑣)
8584fveq2d 5425 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽‘((𝑣 + 1) − 1)) = (𝐽𝑣))
8675, 81, 853eqtrd 2176 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = (𝐽𝑣))
8786fveq2d 5425 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐺‘(𝑄‘(𝑣 + 1))) = (𝐺‘(𝐽𝑣)))
881, 4, 65iseqf1olemqf1o 10266 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
8988adantr 274 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
90 iseqf1o.7 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
9190adantlr 468 . . . . . . 7 (((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
92 iseqf1olemqsumk.p . . . . . . 7 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
9324, 89, 64, 91, 92iseqf1olemfvp 10270 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄 / 𝑓𝑃‘(𝑣 + 1)) = (𝐺‘(𝑄‘(𝑣 + 1))))
9428, 31, 333jca 1161 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ))
9511, 23zsubcld 9178 . . . . . . . . . . . 12 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
9695zred 9173 . . . . . . . . . . 11 (𝜑 → ((𝐽𝐾) − 1) ∈ ℝ)
9796adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ∈ ℝ)
9850lem1d 8691 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ (𝐽𝐾))
9997, 50, 51, 98, 60letrd 7886 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ 𝑁)
10037, 97, 51, 53, 99letrd 7886 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣𝑁)
10146, 100jca 304 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀𝑣𝑣𝑁))
102 elfz2 9797 . . . . . . . 8 (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀𝑣𝑣𝑁)))
10394, 101, 102sylanbrc 413 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ (𝑀...𝑁))
104103, 25, 103, 91, 92iseqf1olemfvp 10270 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝐺‘(𝐽𝑣)))
10587, 93, 1043eqtr4rd 2183 . . . . 5 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝑄 / 𝑓𝑃‘(𝑣 + 1)))
106 simpr 109 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
107 elfzuz 9802 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
1081, 107syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
109108adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
110 uztrn 9342 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
111106, 109, 110syl2anc 408 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
1121, 4, 65, 90, 92iseqf1olemjpcl 10268 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
113111, 112syldan 280 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
114 simpr 109 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
1153adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℤ)
116115peano2zd 9176 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
117115zred 9173 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℝ)
118117lep1d 8689 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ≤ (𝐾 + 1))
119 eluz2 9332 . . . . . . . 8 ((𝐾 + 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝐾 ≤ (𝐾 + 1)))
120115, 116, 118, 119syl3anbrc 1165 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ (ℤ𝐾))
121 uztrn 9342 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
122114, 120, 121syl2anc 408 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ𝐾))
1231, 4, 65, 90, 92iseqf1olemqpcl 10269 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
124111, 123syldan 280 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
125122, 124syldan 280 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
126 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12722, 23, 105, 113, 125, 126seq3shft2 10246 . . . 4 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)))
12811zcnd 9174 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℂ)
129 npcan1 8140 . . . . . 6 ((𝐽𝐾) ∈ ℂ → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
130128, 129syl 14 . . . . 5 (𝜑 → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
131130fveq2d 5425 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
132127, 131eqtrd 2172 . . 3 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
133 f1ocnvfv2 5679 . . . . . 6 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
1344, 1, 133syl2anc 408 . . . . 5 (𝜑 → (𝐽‘(𝐽𝐾)) = 𝐾)
135134fveq2d 5425 . . . 4 (𝜑 → (𝐺‘(𝐽‘(𝐽𝐾))) = (𝐺𝐾))
1361, 4, 9, 90, 92iseqf1olemfvp 10270 . . . 4 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝐺‘(𝐽‘(𝐽𝐾))))
1371, 88, 1, 90, 92iseqf1olemfvp 10270 . . . . 5 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺‘(𝑄𝐾)))
1381, 4, 1, 65iseqf1olemqval 10260 . . . . . . 7 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
13914, 1, 4, 15iseqf1olemkle 10257 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐽𝐾))
140 eluz2 9332 . . . . . . . . . 10 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
1413, 11, 139, 140syl3anbrc 1165 . . . . . . . . 9 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
142 eluzfz1 9811 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
143141, 142syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
144143iftrued 3481 . . . . . . 7 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
145 eqidd 2140 . . . . . . . 8 (𝜑𝐾 = 𝐾)
146145iftrued 3481 . . . . . . 7 (𝜑 → if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾)
147138, 144, 1463eqtrd 2176 . . . . . 6 (𝜑 → (𝑄𝐾) = 𝐾)
148147fveq2d 5425 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) = (𝐺𝐾))
149137, 148eqtrd 2172 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺𝐾))
150135, 136, 1493eqtr4d 2182 . . 3 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝑄 / 𝑓𝑃𝐾))
151132, 150oveq12d 5792 . 2 (𝜑 → ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
1523peano2zd 9176 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℤ)
153 zltp1le 9108 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
1543, 11, 153syl2anc 408 . . . . 5 (𝜑 → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
15517, 154mpbid 146 . . . 4 (𝜑 → (𝐾 + 1) ≤ (𝐽𝐾))
156 eluz2 9332 . . . 4 ((𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)) ↔ ((𝐾 + 1) ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐾 + 1) ≤ (𝐽𝐾)))
157152, 11, 155, 156syl3anbrc 1165 . . 3 (𝜑 → (𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)))
1583, 157, 113, 126seq3m1 10241 . 2 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))))
159 iseqf1o.3 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
160126, 159, 157, 3, 124seq3-1p 10253 . . 3 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))))
161 iseqf1o.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
162 fveq2 5421 . . . . . . 7 (𝑥 = (𝑄𝐾) → (𝐺𝑥) = (𝐺‘(𝑄𝐾)))
163162eleq1d 2208 . . . . . 6 (𝑥 = (𝑄𝐾) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑄𝐾)) ∈ 𝑆))
16490ralrimiva 2505 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
165147, 108eqeltrd 2216 . . . . . 6 (𝜑 → (𝑄𝐾) ∈ (ℤ𝑀))
166163, 164, 165rspcdva 2794 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) ∈ 𝑆)
167137, 166eqeltrd 2216 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) ∈ 𝑆)
168 eqid 2139 . . . . . 6 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
169168, 152, 125, 126seqf 10234 . . . . 5 (𝜑 → seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃):(ℤ‘(𝐾 + 1))⟶𝑆)
170169, 157ffvelrnd 5556 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) ∈ 𝑆)
171161, 167, 170caovcomd 5927 . . 3 (𝜑 → ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
172160, 171eqtrd 2172 . 2 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
173151, 158, 1723eqtr4d 2182 1 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wne 2308  wral 2416  csb 3003  ifcif 3474   class class class wbr 3929  cmpt 3989  ccnv 4538  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cmin 7933  cz 9054  cuz 9326  ...cfz 9790  ..^cfzo 9919  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  seq3f1olemqsumk  10272
  Copyright terms: Public domain W3C validator