MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg0 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg0 26293
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg0.d (𝜑𝐷𝑉)
1egrvtxdg0.n (𝜑𝐶𝐷)
1egrvtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
Assertion
Ref Expression
1egrvtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)

Proof of Theorem 1egrvtxdg0
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
21adantl 482 . . . 4 ((𝐵 = 𝐷𝜑) → (Vtx‘𝐺) = 𝑉)
3 1egrvtxdg1.a . . . . 5 (𝜑𝐴𝑋)
43adantl 482 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐴𝑋)
5 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
65adantl 482 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐵𝑉)
7 1egrvtxdg0.i . . . . . 6 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
87adantl 482 . . . . 5 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
9 preq2 4239 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵, 𝐷} = {𝐵, 𝐵})
109eqcoms 2629 . . . . . . . . 9 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵, 𝐵})
11 dfsn2 4161 . . . . . . . . 9 {𝐵} = {𝐵, 𝐵}
1210, 11syl6eqr 2673 . . . . . . . 8 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵})
1312adantr 481 . . . . . . 7 ((𝐵 = 𝐷𝜑) → {𝐵, 𝐷} = {𝐵})
1413opeq2d 4377 . . . . . 6 ((𝐵 = 𝐷𝜑) → ⟨𝐴, {𝐵, 𝐷}⟩ = ⟨𝐴, {𝐵}⟩)
1514sneqd 4160 . . . . 5 ((𝐵 = 𝐷𝜑) → {⟨𝐴, {𝐵, 𝐷}⟩} = {⟨𝐴, {𝐵}⟩})
168, 15eqtrd 2655 . . . 4 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵}⟩})
17 1egrvtxdg1.c . . . . . . 7 (𝜑𝐶𝑉)
18 1egrvtxdg1.n . . . . . . . 8 (𝜑𝐵𝐶)
1918necomd 2845 . . . . . . 7 (𝜑𝐶𝐵)
2017, 19jca 554 . . . . . 6 (𝜑 → (𝐶𝑉𝐶𝐵))
21 eldifsn 4287 . . . . . 6 (𝐶 ∈ (𝑉 ∖ {𝐵}) ↔ (𝐶𝑉𝐶𝐵))
2220, 21sylibr 224 . . . . 5 (𝜑𝐶 ∈ (𝑉 ∖ {𝐵}))
2322adantl 482 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐶 ∈ (𝑉 ∖ {𝐵}))
242, 4, 6, 16, 231loopgrvd0 26286 . . 3 ((𝐵 = 𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
2524ex 450 . 2 (𝐵 = 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
26 necom 2843 . . . . . . . . . 10 (𝐵𝐶𝐶𝐵)
27 df-ne 2791 . . . . . . . . . 10 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
2826, 27sylbb 209 . . . . . . . . 9 (𝐵𝐶 → ¬ 𝐶 = 𝐵)
2918, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐵)
30 1egrvtxdg0.n . . . . . . . . 9 (𝜑𝐶𝐷)
3130neneqd 2795 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐷)
3229, 31jca 554 . . . . . . 7 (𝜑 → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3332adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
34 ioran 511 . . . . . 6 (¬ (𝐶 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3533, 34sylibr 224 . . . . 5 ((𝐵𝐷𝜑) → ¬ (𝐶 = 𝐵𝐶 = 𝐷))
365, 1eleqtrrd 2701 . . . . . . . . . . 11 (𝜑𝐵 ∈ (Vtx‘𝐺))
3736elfvexd 6179 . . . . . . . . . 10 (𝜑𝐺 ∈ V)
38 edgval 25841 . . . . . . . . . 10 (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺))
3937, 38syl 17 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = ran (iEdg‘𝐺))
407rneqd 5313 . . . . . . . . . 10 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐷}⟩})
41 rnsnopg 5573 . . . . . . . . . . 11 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
423, 41syl 17 . . . . . . . . . 10 (𝜑 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
4340, 42eqtrd 2655 . . . . . . . . 9 (𝜑 → ran (iEdg‘𝐺) = {{𝐵, 𝐷}})
4439, 43eqtrd 2655 . . . . . . . 8 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐷}})
4544adantl 482 . . . . . . 7 ((𝐵𝐷𝜑) → (Edg‘𝐺) = {{𝐵, 𝐷}})
4645rexeqdv 3134 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ ∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒))
47 prex 4870 . . . . . . 7 {𝐵, 𝐷} ∈ V
48 eleq2 2687 . . . . . . . 8 (𝑒 = {𝐵, 𝐷} → (𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4948rexsng 4190 . . . . . . 7 ({𝐵, 𝐷} ∈ V → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
5047, 49mp1i 13 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
51 elprg 4167 . . . . . . . 8 (𝐶𝑉 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5217, 51syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5352adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5446, 50, 533bitrd 294 . . . . 5 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5535, 54mtbird 315 . . . 4 ((𝐵𝐷𝜑) → ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒)
56 eqid 2621 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
573adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → 𝐴𝑋)
5836adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵 ∈ (Vtx‘𝐺))
59 1egrvtxdg0.d . . . . . . . 8 (𝜑𝐷𝑉)
6059, 1eleqtrrd 2701 . . . . . . 7 (𝜑𝐷 ∈ (Vtx‘𝐺))
6160adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → 𝐷 ∈ (Vtx‘𝐺))
627adantl 482 . . . . . 6 ((𝐵𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
63 simpl 473 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵𝐷)
6456, 57, 58, 61, 62, 63usgr1e 26030 . . . . 5 ((𝐵𝐷𝜑) → 𝐺 ∈ USGraph )
6517, 1eleqtrrd 2701 . . . . . 6 (𝜑𝐶 ∈ (Vtx‘𝐺))
6665adantl 482 . . . . 5 ((𝐵𝐷𝜑) → 𝐶 ∈ (Vtx‘𝐺))
67 eqid 2621 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
68 eqid 2621 . . . . . 6 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
6956, 67, 68vtxdusgr0edgnel 26277 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Vtx‘𝐺)) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
7064, 66, 69syl2anc 692 . . . 4 ((𝐵𝐷𝜑) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
7155, 70mpbird 247 . . 3 ((𝐵𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
7271ex 450 . 2 (𝐵𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
7325, 72pm2.61ine 2873 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  cdif 3552  {csn 4148  {cpr 4150  cop 4154  ran crn 5075  cfv 5847  0cc0 9880  Vtxcvtx 25774  iEdgciedg 25775  Edgcedg 25839   USGraph cusgr 25937  VtxDegcvtxdg 26248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-xadd 11891  df-fz 12269  df-hash 13058  df-edg 25840  df-uhgr 25849  df-upgr 25873  df-uspgr 25938  df-usgr 25939  df-vtxdg 26249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator