MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 27722
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v 𝑉 = (Vtx‘𝐺)
2pthon3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthon3v (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 2pthon3v
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
2 edgval 26834 . . . . . . . . . 10 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2844 . . . . . . . . 9 𝐸 = ran (iEdg‘𝐺)
43eleq2i 2904 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺))
5 2pthon3v.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
6 eqid 2821 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
75, 6uhgrf 26847 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
87ffnd 6515 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
9 fvelrnb 6726 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
108, 9syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
114, 10syl5bb 285 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
123eleq2i 2904 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺))
13 fvelrnb 6726 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
148, 13syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1512, 14syl5bb 285 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1611, 15anbi12d 632 . . . . . 6 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1716adantr 483 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1817adantr 483 . . . 4 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
19 reeanv 3367 . . . 4 (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
2018, 19syl6bbr 291 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
21 df-s2 14210 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = (⟨“𝑖”⟩ ++ ⟨“𝑗”⟩)
2221ovexi 7190 . . . . . . 7 ⟨“𝑖𝑗”⟩ ∈ V
23 df-s3 14211 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2423ovexi 7190 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ ∈ V
2522, 24pm3.2i 473 . . . . . 6 (⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V)
26 eqid 2821 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
27 eqid 2821 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = ⟨“𝑖𝑗”⟩
28 simp-4r 782 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝑉𝐵𝑉𝐶𝑉))
29 3simpb 1145 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3029ad3antlr 729 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝐵𝐵𝐶))
31 eqimss2 4024 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
32 eqimss2 4024 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3331, 32anim12i 614 . . . . . . . . 9 ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
3433adantl 484 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
35 fveqeq2 6679 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵}))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
37 eqtr2 2842 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})
38 3simpa 1144 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
39 3simpc 1146 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
40 preq12bg 4784 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝐵𝑉) ∧ (𝐵𝑉𝐶𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
4138, 39, 40syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
42 eqneqall 3027 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐵 → (𝐴𝐵𝑖𝑗))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵 → (𝐴 = 𝐵𝑖𝑗))
44433ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵𝑖𝑗))
4544com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐵 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
4645adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐵𝐵 = 𝐶) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
47 eqneqall 3027 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐶 → (𝐴𝐶𝑖𝑗))
4847com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐶 → (𝐴 = 𝐶𝑖𝑗))
49483ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐶𝑖𝑗))
5049com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐶 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5150adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐶𝐵 = 𝐵) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5246, 51jaoi 853 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5341, 52syl6bi 255 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗)))
5453com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5554adantl 484 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5655imp 409 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗))
5756com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5837, 57syl 17 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5936, 58syl6bi 255 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗)))
6059com23 86 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
61 2a1 28 . . . . . . . . . . 11 (𝑖𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
6260, 61pm2.61ine 3100 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6362adantr 483 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6463imp 409 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖𝑗)
65 simplr2 1212 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴𝐶)
6665adantr 483 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴𝐶)
6726, 27, 28, 30, 34, 5, 6, 64, 662pthond 27721 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩)
68 s2len 14251 . . . . . . 7 (♯‘⟨“𝑖𝑗”⟩) = 2
6967, 68jctir 523 . . . . . 6 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2))
70 breq12 5071 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩))
71 fveqeq2 6679 . . . . . . . . 9 (𝑓 = ⟨“𝑖𝑗”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7271adantr 483 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7370, 72anbi12d 632 . . . . . . 7 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2) ↔ (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2)))
7473spc2egv 3600 . . . . . 6 ((⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V) → ((⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7525, 69, 74mpsyl 68 . . . . 5 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
7675ex 415 . . . 4 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7776rexlimdvva 3294 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7820, 77sylbid 242 . 2 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
79783impia 1113 1 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  {cpr 4569   class class class wbr 5066  dom cdm 5555  ran crn 5556   Fn wfn 6350  cfv 6355  (class class class)co 7156  2c2 11693  chash 13691   ++ cconcat 13922  ⟨“cs1 13949  ⟨“cs2 14203  ⟨“cs3 14204  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UHGraphcuhgr 26841  SPathsOncspthson 27496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-edg 26833  df-uhgr 26843  df-wlks 27381  df-wlkson 27382  df-trls 27474  df-trlson 27475  df-pths 27497  df-spths 27498  df-spthson 27500
This theorem is referenced by:  2pthfrgr  28063
  Copyright terms: Public domain W3C validator