Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim3 Structured version   Visualization version   GIF version

Theorem 3dim3 36620
Description: Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem 3dim3
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim2 36619 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
543adant3r1 1178 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)))
6 simpl2l 1222 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
7 simp3l 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 (𝑄 𝑅))
8 simp1l 1193 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ HL)
9 simp1r2 1266 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑄𝐴)
101, 3hlatjidm 36520 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
118, 9, 10syl2anc 586 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑄) = 𝑄)
1211oveq1d 7171 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
1312breq2d 5078 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑣 ((𝑄 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
147, 13mtbird 327 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑄 𝑄) 𝑅))
15 oveq1 7163 . . . . . . . . . . 11 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615oveq1d 7171 . . . . . . . . . 10 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1716breq2d 5078 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑄 𝑄) 𝑅)))
1817notbid 320 . . . . . . . 8 (𝑃 = 𝑄 → (¬ 𝑣 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑄 𝑄) 𝑅)))
1918biimparc 482 . . . . . . 7 ((¬ 𝑣 ((𝑄 𝑄) 𝑅) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
2014, 19sylan 582 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
21 breq1 5069 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑣 ((𝑃 𝑄) 𝑅)))
2221notbid 320 . . . . . . 7 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑅)))
2322rspcev 3623 . . . . . 6 ((𝑣𝐴 ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
246, 20, 23syl2anc 586 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
25 simp2l 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑣𝐴)
2625ad2antrr 724 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → 𝑣𝐴)
277ad2antrr 724 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 (𝑄 𝑅))
281, 3hlatjass 36521 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
29283ad2ant1 1129 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
3029ad2antrr 724 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
318hllatd 36515 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝐾 ∈ Lat)
32 simp1r1 1265 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃𝐴)
33 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
3433, 3atbase 36440 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑃 ∈ (Base‘𝐾))
36 simp1r3 1267 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → 𝑅𝐴)
3733, 1, 3hlatjcl 36518 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
388, 9, 36, 37syl3anc 1367 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑄 𝑅) ∈ (Base‘𝐾))
3931, 35, 383jca 1124 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4039adantr 483 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
4133, 2, 1latleeqj1 17673 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4240, 41syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑃 (𝑄 𝑅)) = (𝑄 𝑅)))
4342biimpa 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 (𝑄 𝑅)) = (𝑄 𝑅))
4430, 43eqtrd 2856 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
4544breq2d 5078 . . . . . . . 8 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → (𝑣 ((𝑃 𝑄) 𝑅) ↔ 𝑣 (𝑄 𝑅)))
4627, 45mtbird 327 . . . . . . 7 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
4726, 46, 23syl2anc 586 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
48 simpl2r 1223 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑤𝐴)
4948ad2antrr 724 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑤𝐴)
508, 32, 93jca 1124 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5150ad3antrrr 728 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
5236, 25jca 514 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → (𝑅𝐴𝑣𝐴))
5352ad3antrrr 728 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
54 simpl3r 1225 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
5554ad2antrr 724 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑄 𝑅) 𝑣))
56 simplr 767 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
57 simpr 487 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑃 ((𝑄 𝑅) 𝑣))
581, 2, 33dimlem3a 36611 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑤 ((𝑄 𝑅) 𝑣) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
5951, 53, 55, 56, 57, 58syl113anc 1378 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑤 ((𝑃 𝑄) 𝑅))
60 breq1 5069 . . . . . . . . . 10 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑅) ↔ 𝑤 ((𝑃 𝑄) 𝑅)))
6160notbid 320 . . . . . . . . 9 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑅)))
6261rspcev 3623 . . . . . . . 8 ((𝑤𝐴 ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
6349, 59, 62syl2anc 586 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
64 simpl2l 1222 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → 𝑣𝐴)
6564ad2antrr 724 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → 𝑣𝐴)
6650ad3antrrr 728 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
6752ad3antrrr 728 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → (𝑅𝐴𝑣𝐴))
68 simpl3l 1224 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ¬ 𝑣 (𝑄 𝑅))
6968ad2antrr 724 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 (𝑄 𝑅))
70 simplr 767 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 (𝑄 𝑅))
71 simpr 487 . . . . . . . . 9 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑃 ((𝑄 𝑅) 𝑣))
721, 2, 33dimlem4a 36614 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑣𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣))) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7366, 67, 69, 70, 71, 72syl113anc 1378 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ¬ 𝑣 ((𝑃 𝑄) 𝑅))
7465, 73, 23syl2anc 586 . . . . . . 7 ((((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) ∧ ¬ 𝑃 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7563, 74pm2.61dan 811 . . . . . 6 (((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑅)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7647, 75pm2.61dan 811 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) ∧ 𝑃𝑄) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
7724, 76pm2.61dane 3104 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣))) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
78773exp 1115 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑣𝐴𝑤𝐴) → ((¬ 𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))))
7978rexlimdvv 3293 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑣𝐴𝑤𝐴𝑣 (𝑄 𝑅) ∧ ¬ 𝑤 ((𝑄 𝑅) 𝑣)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅)))
805, 79mpd 15 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑠𝐴 ¬ 𝑠 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  lvolex3N  36689  dalem18  36832  dvh4dimat  38589
  Copyright terms: Public domain W3C validator