MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2b Structured version   Visualization version   GIF version

Theorem carden2b 9398
Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 9397 are meant to replace carden 9975 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
carden2b (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))

Proof of Theorem carden2b
StepHypRef Expression
1 cardne 9396 . . . . 5 ((card‘𝐵) ∈ (card‘𝐴) → ¬ (card‘𝐵) ≈ 𝐴)
2 ennum 9378 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
32biimpa 479 . . . . . . 7 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵 ∈ dom card)
4 cardid2 9384 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
53, 4syl 17 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐵)
6 ensym 8560 . . . . . . 7 (𝐴𝐵𝐵𝐴)
76adantr 483 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵𝐴)
8 entr 8563 . . . . . 6 (((card‘𝐵) ≈ 𝐵𝐵𝐴) → (card‘𝐵) ≈ 𝐴)
95, 7, 8syl2anc 586 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐴)
101, 9nsyl3 140 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐵) ∈ (card‘𝐴))
11 cardon 9375 . . . . 5 (card‘𝐴) ∈ On
12 cardon 9375 . . . . 5 (card‘𝐵) ∈ On
13 ontri1 6227 . . . . 5 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
1411, 12, 13mp2an 690 . . . 4 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
1510, 14sylibr 236 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ⊆ (card‘𝐵))
16 cardne 9396 . . . . 5 ((card‘𝐴) ∈ (card‘𝐵) → ¬ (card‘𝐴) ≈ 𝐵)
17 cardid2 9384 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
18 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
19 entr 8563 . . . . . 6 (((card‘𝐴) ≈ 𝐴𝐴𝐵) → (card‘𝐴) ≈ 𝐵)
2017, 18, 19syl2anr 598 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ≈ 𝐵)
2116, 20nsyl3 140 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐴) ∈ (card‘𝐵))
22 ontri1 6227 . . . . 5 (((card‘𝐵) ∈ On ∧ (card‘𝐴) ∈ On) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵)))
2312, 11, 22mp2an 690 . . . 4 ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵))
2421, 23sylibr 236 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ⊆ (card‘𝐴))
2515, 24eqssd 3986 . 2 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
26 ndmfv 6702 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
2726adantl 484 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = ∅)
282notbid 320 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ dom card ↔ ¬ 𝐵 ∈ dom card))
2928biimpa 479 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → ¬ 𝐵 ∈ dom card)
30 ndmfv 6702 . . . 4 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3129, 30syl 17 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐵) = ∅)
3227, 31eqtr4d 2861 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
3325, 32pm2.61dan 811 1 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3938  c0 4293   class class class wbr 5068  dom cdm 5557  Oncon0 6193  cfv 6357  cen 8508  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-er 8291  df-en 8512  df-card 9370
This theorem is referenced by:  card1  9399  carddom2  9408  cardennn  9414  cardsucinf  9415  pm54.43lem  9430  nnadju  9625  ficardun  9626  ackbij1lem5  9648  ackbij1lem8  9651  ackbij1lem9  9652  ackbij2lem2  9664  carden  9975  r1tskina  10206  cardfz  13341
  Copyright terms: Public domain W3C validator