MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun Structured version   Visualization version   GIF version

Theorem ficardun 9624
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ficardun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardun
StepHypRef Expression
1 finnum 9377 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 finnum 9377 . . . . . . 7 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
3 cardadju 9620 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
41, 2, 3syl2an 597 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
543adant3 1128 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
65ensymd 8560 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
7 endjudisj 9594 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
8 entr 8561 . . . 4 ((((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵) ∧ (𝐴𝐵) ≈ (𝐴𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
96, 7, 8syl2anc 586 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
10 carden2b 9396 . . 3 (((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴𝐵)))
119, 10syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = (card‘(𝐴𝐵)))
12 ficardom 9390 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
13 ficardom 9390 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
14 nnacl 8237 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
15 cardnn 9392 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1614, 15syl 17 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1712, 13, 16syl2an 597 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
18173adant3 1128 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
1911, 18eqtr3d 2858 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3934  cin 3935  c0 4291   class class class wbr 5066  dom cdm 5555  cfv 6355  (class class class)co 7156  ωcom 7580   +o coa 8099  cen 8506  Fincfn 8509  cdju 9327  cardccrd 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368
This theorem is referenced by:  hashun  13744
  Copyright terms: Public domain W3C validator