Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   GIF version

Theorem cevathlem1 40360
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevathlem1.b (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
cevathlem1.c (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
cevathlem1.d (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
cevathlem1.e (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
Assertion
Ref Expression
cevathlem1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1072 . . . 4 (𝜑𝐵 ∈ ℂ)
3 cevathlem1.b . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
43simp3d 1073 . . . 4 (𝜑𝐹 ∈ ℂ)
52, 4mulcld 10004 . . 3 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
6 cevathlem1.c . . . 4 (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
76simp2d 1072 . . 3 (𝜑𝐻 ∈ ℂ)
85, 7mulcld 10004 . 2 (𝜑 → ((𝐵 · 𝐹) · 𝐻) ∈ ℂ)
93simp1d 1071 . . . 4 (𝜑𝐷 ∈ ℂ)
106simp1d 1071 . . . 4 (𝜑𝐺 ∈ ℂ)
119, 10mulcld 10004 . . 3 (𝜑 → (𝐷 · 𝐺) ∈ ℂ)
126simp3d 1073 . . 3 (𝜑𝐾 ∈ ℂ)
1311, 12mulcld 10004 . 2 (𝜑 → ((𝐷 · 𝐺) · 𝐾) ∈ ℂ)
141simp1d 1071 . . . 4 (𝜑𝐴 ∈ ℂ)
153simp2d 1072 . . . 4 (𝜑𝐸 ∈ ℂ)
1614, 15mulcld 10004 . . 3 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
171simp3d 1073 . . 3 (𝜑𝐶 ∈ ℂ)
1816, 17mulcld 10004 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ∈ ℂ)
19 cevathlem1.d . . . . 5 (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
2019simp1d 1071 . . . 4 (𝜑𝐴 ≠ 0)
2119simp2d 1072 . . . 4 (𝜑𝐸 ≠ 0)
2214, 15, 20, 21mulne0d 10623 . . 3 (𝜑 → (𝐴 · 𝐸) ≠ 0)
2319simp3d 1073 . . 3 (𝜑𝐶 ≠ 0)
2416, 17, 22, 23mulne0d 10623 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ≠ 0)
25 cevathlem1.e . . . . . . . 8 (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
2625simp1d 1071 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐶 · 𝐷))
2725simp2d 1072 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐴 · 𝐺))
2826, 27oveq12d 6622 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐶 · 𝐷) · (𝐴 · 𝐺)))
2914, 2, 15, 4mul4d 10192 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐴 · 𝐸) · (𝐵 · 𝐹)))
3017, 9, 14, 10mul4d 10192 . . . . . 6 (𝜑 → ((𝐶 · 𝐷) · (𝐴 · 𝐺)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3128, 29, 303eqtr3d 2663 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · (𝐵 · 𝐹)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3225simp3d 1073 . . . . 5 (𝜑 → (𝐶 · 𝐻) = (𝐸 · 𝐾))
3331, 32oveq12d 6622 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)))
3416, 5, 17, 7mul4d 10192 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)))
3517, 14mulcld 10004 . . . . 5 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
3635, 11, 15, 12mul4d 10192 . . . 4 (𝜑 → (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3733, 34, 363eqtr3d 2663 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3814, 15, 17mul32d 10190 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐴 · 𝐶) · 𝐸))
3914, 17mulcomd 10005 . . . . . 6 (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴))
4039oveq1d 6619 . . . . 5 (𝜑 → ((𝐴 · 𝐶) · 𝐸) = ((𝐶 · 𝐴) · 𝐸))
4138, 40eqtrd 2655 . . . 4 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐶 · 𝐴) · 𝐸))
4241oveq1d 6619 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
4337, 42eqtr4d 2658 . 2 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)))
448, 13, 18, 24, 43mulcanad 10606 1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790  (class class class)co 6604  cc 9878  0cc0 9880   · cmul 9885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  cevath  40362
  Copyright terms: Public domain W3C validator