Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   GIF version

Theorem cevathlem1 43144
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevathlem1.b (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
cevathlem1.c (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
cevathlem1.d (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
cevathlem1.e (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
Assertion
Ref Expression
cevathlem1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1139 . . . 4 (𝜑𝐵 ∈ ℂ)
3 cevathlem1.b . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
43simp3d 1140 . . . 4 (𝜑𝐹 ∈ ℂ)
52, 4mulcld 10661 . . 3 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
6 cevathlem1.c . . . 4 (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
76simp2d 1139 . . 3 (𝜑𝐻 ∈ ℂ)
85, 7mulcld 10661 . 2 (𝜑 → ((𝐵 · 𝐹) · 𝐻) ∈ ℂ)
93simp1d 1138 . . . 4 (𝜑𝐷 ∈ ℂ)
106simp1d 1138 . . . 4 (𝜑𝐺 ∈ ℂ)
119, 10mulcld 10661 . . 3 (𝜑 → (𝐷 · 𝐺) ∈ ℂ)
126simp3d 1140 . . 3 (𝜑𝐾 ∈ ℂ)
1311, 12mulcld 10661 . 2 (𝜑 → ((𝐷 · 𝐺) · 𝐾) ∈ ℂ)
141simp1d 1138 . . . 4 (𝜑𝐴 ∈ ℂ)
153simp2d 1139 . . . 4 (𝜑𝐸 ∈ ℂ)
1614, 15mulcld 10661 . . 3 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
171simp3d 1140 . . 3 (𝜑𝐶 ∈ ℂ)
1816, 17mulcld 10661 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ∈ ℂ)
19 cevathlem1.d . . . . 5 (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
2019simp1d 1138 . . . 4 (𝜑𝐴 ≠ 0)
2119simp2d 1139 . . . 4 (𝜑𝐸 ≠ 0)
2214, 15, 20, 21mulne0d 11292 . . 3 (𝜑 → (𝐴 · 𝐸) ≠ 0)
2319simp3d 1140 . . 3 (𝜑𝐶 ≠ 0)
2416, 17, 22, 23mulne0d 11292 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ≠ 0)
25 cevathlem1.e . . . . . . . 8 (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
2625simp1d 1138 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐶 · 𝐷))
2725simp2d 1139 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐴 · 𝐺))
2826, 27oveq12d 7174 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐶 · 𝐷) · (𝐴 · 𝐺)))
2914, 2, 15, 4mul4d 10852 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐴 · 𝐸) · (𝐵 · 𝐹)))
3017, 9, 14, 10mul4d 10852 . . . . . 6 (𝜑 → ((𝐶 · 𝐷) · (𝐴 · 𝐺)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3128, 29, 303eqtr3d 2864 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · (𝐵 · 𝐹)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3225simp3d 1140 . . . . 5 (𝜑 → (𝐶 · 𝐻) = (𝐸 · 𝐾))
3331, 32oveq12d 7174 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)))
3416, 5, 17, 7mul4d 10852 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)))
3517, 14mulcld 10661 . . . . 5 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
3635, 11, 15, 12mul4d 10852 . . . 4 (𝜑 → (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3733, 34, 363eqtr3d 2864 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3814, 15, 17mul32d 10850 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐴 · 𝐶) · 𝐸))
3914, 17mulcomd 10662 . . . . . 6 (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴))
4039oveq1d 7171 . . . . 5 (𝜑 → ((𝐴 · 𝐶) · 𝐸) = ((𝐶 · 𝐴) · 𝐸))
4138, 40eqtrd 2856 . . . 4 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐶 · 𝐴) · 𝐸))
4241oveq1d 7171 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
4337, 42eqtr4d 2859 . 2 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)))
448, 13, 18, 24, 43mulcanad 11275 1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wne 3016  (class class class)co 7156  cc 10535  0cc0 10537   · cmul 10542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873
This theorem is referenced by:  cevath  43146
  Copyright terms: Public domain W3C validator